New partial update robust kernel least mean square adaptive filtering algorithm

Yi Zhou, Hongqing Liu, S. Chan
{"title":"New partial update robust kernel least mean square adaptive filtering algorithm","authors":"Yi Zhou, Hongqing Liu, S. Chan","doi":"10.1109/ICDSP.2014.6900788","DOIUrl":null,"url":null,"abstract":"This paper studies a partial update (PU) robust kernel least mean square (KLMS) adaptive filtering algorithm which is particularly suitable for nonlinear acoustic echo cancellation (NLAEC) application. By exploring the data mapping property from the linear space to the high-dimensional feature space using polynomial kernel, the sequential PU scheme for conventional linear adaptive filters can be applied to the KLMS algorithm. This results in reduced computational complexity with moderate convergence rate loss. Moreover, in order to enhance the robustness of the KLMS algorithm to impulsive interference, the robust M-estimate scheme is incorporated into the kernel trick used in KLMS to develop a robust kernel least mean M-estimate (KLMM) algorithm. Finally, computer simulations are conducted to verify the advantages of the proposed work.","PeriodicalId":301856,"journal":{"name":"2014 19th International Conference on Digital Signal Processing","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 19th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2014.6900788","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper studies a partial update (PU) robust kernel least mean square (KLMS) adaptive filtering algorithm which is particularly suitable for nonlinear acoustic echo cancellation (NLAEC) application. By exploring the data mapping property from the linear space to the high-dimensional feature space using polynomial kernel, the sequential PU scheme for conventional linear adaptive filters can be applied to the KLMS algorithm. This results in reduced computational complexity with moderate convergence rate loss. Moreover, in order to enhance the robustness of the KLMS algorithm to impulsive interference, the robust M-estimate scheme is incorporated into the kernel trick used in KLMS to develop a robust kernel least mean M-estimate (KLMM) algorithm. Finally, computer simulations are conducted to verify the advantages of the proposed work.
新的部分更新鲁棒核最小均方自适应滤波算法
研究了一种特别适用于非线性声回波抵消的部分更新鲁棒核最小均方(KLMS)自适应滤波算法。通过利用多项式核探索数据从线性空间到高维特征空间的映射特性,将传统线性自适应滤波器的顺序PU方案应用于KLMS算法。这降低了计算复杂度,收敛速度损失适中。此外,为了提高KLMS算法对脉冲干扰的鲁棒性,将鲁棒m估计方案融入到KLMS的核技巧中,开发了一种鲁棒核最小平均m估计(KLMM)算法。最后,通过计算机仿真验证了所提方法的优越性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信