Jordan Block Eigenvalue Shift in the Marching-on-in-Time Electric Field Integral Equation

Petrus W. N. van Diepen, R. Dilz, M. V. van Beurden
{"title":"Jordan Block Eigenvalue Shift in the Marching-on-in-Time Electric Field Integral Equation","authors":"Petrus W. N. van Diepen, R. Dilz, M. V. van Beurden","doi":"10.23919/EuCAP57121.2023.10133600","DOIUrl":null,"url":null,"abstract":"The Marching-on-in-Time Electric Field Integral Equation (MOT-EFIE) and its time differentiated variant (MOT-TDEFIE) both suffer from the linear-in-time instability caused by dimension-two Jordan blocks in the companion-matrix representation. We prove that these Jordan blocks are centered around a specific eigenvalue that depends on the recurrence relation between the interaction matrices. By adapting the recurrence relation, we can move the pertaining eigenvalues of the Jordan blocks to the interior of the unit circle and therefore remove the linear-in-time instability from the scheme. We provide numerical evidence to further illustrate these findings.","PeriodicalId":103360,"journal":{"name":"2023 17th European Conference on Antennas and Propagation (EuCAP)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 17th European Conference on Antennas and Propagation (EuCAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/EuCAP57121.2023.10133600","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Marching-on-in-Time Electric Field Integral Equation (MOT-EFIE) and its time differentiated variant (MOT-TDEFIE) both suffer from the linear-in-time instability caused by dimension-two Jordan blocks in the companion-matrix representation. We prove that these Jordan blocks are centered around a specific eigenvalue that depends on the recurrence relation between the interaction matrices. By adapting the recurrence relation, we can move the pertaining eigenvalues of the Jordan blocks to the interior of the unit circle and therefore remove the linear-in-time instability from the scheme. We provide numerical evidence to further illustrate these findings.
随时行进电场积分方程中的Jordan块特征值移位
随时行进电场积分方程(MOT-EFIE)及其微分方程(MOT-TDEFIE)在伴阵表示中都存在由二维Jordan块引起的线性随时不稳定性。我们证明了这些约当块以一个特定的特征值为中心,该特征值依赖于相互作用矩阵之间的递归关系。通过采用递推关系,我们可以将Jordan块的相关特征值移动到单位圆的内部,从而消除了该方案的线性不稳定性。我们提供了数字证据来进一步说明这些发现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信