Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study

M. Eratalay
{"title":"Estimation of Multivariate Stochastic Volatility Models: A Comparative Monte Carlo Study","authors":"M. Eratalay","doi":"10.2139/ssrn.2097717","DOIUrl":null,"url":null,"abstract":"In this paper, we compare the small sample performances of Quasi Maximum Likelihood (QML) and Monte Carlo Likelihood (MCL) methods through Monte Carlo studies for several multivariate stochastic volatility models, among which we consider two new models that account for leverage effects. Our results confirm previous findings within the literature, namely, that the MCL estimator has better finite sample performance compared to the QML estimator. QML estimator's performance is closer to that of MCL estimator when the volatility processes have higher variance or when the correlations are high and/or time varying, but it performs relatively worse when leverage is introduced. Finally, we include an empirical illustration by estimating an MSV model with leverage using a trivariate data from the major European stock markets.","PeriodicalId":237209,"journal":{"name":"ERN: Econometric Case Studies of Global Financial Markets (Topic)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ERN: Econometric Case Studies of Global Financial Markets (Topic)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.2097717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we compare the small sample performances of Quasi Maximum Likelihood (QML) and Monte Carlo Likelihood (MCL) methods through Monte Carlo studies for several multivariate stochastic volatility models, among which we consider two new models that account for leverage effects. Our results confirm previous findings within the literature, namely, that the MCL estimator has better finite sample performance compared to the QML estimator. QML estimator's performance is closer to that of MCL estimator when the volatility processes have higher variance or when the correlations are high and/or time varying, but it performs relatively worse when leverage is introduced. Finally, we include an empirical illustration by estimating an MSV model with leverage using a trivariate data from the major European stock markets.
多元随机波动模型的估计:蒙特卡罗比较研究
本文通过蒙特卡罗研究,比较了拟最大似然(QML)和蒙特卡罗似然(MCL)方法在多变量随机波动模型中的小样本性能,其中我们考虑了两个考虑杠杆效应的新模型。我们的结果证实了先前文献中的发现,即与QML估计器相比,MCL估计器具有更好的有限样本性能。当波动过程具有较高的方差或相关性高和/或时变时,QML估计器的性能更接近MCL估计器,但当引入杠杆时,QML估计器的性能相对较差。最后,我们通过使用来自欧洲主要股票市场的三变量数据估计带有杠杆的MSV模型,包括一个实证说明。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信