Locally Defined Electromagnetic Force Density Inside Materials

B. S. Park, J. O. Park, I. Park
{"title":"Locally Defined Electromagnetic Force Density Inside Materials","authors":"B. S. Park, J. O. Park, I. Park","doi":"10.1109/CEFC46938.2020.9451390","DOIUrl":null,"url":null,"abstract":"An object's shape may be deformed by a combination of gravitational, hydrostatic, mechanical, and electromagnetic forces. Therefore, to predict the deformation, it is necessary to know each force's distribution inside the object. Various expressions and methods, such as the Lorentz, Kelvin, generalized, and Korteweg-Helmholtz forces, can be used to calculate the electromagnetic force on a dielectric or magnetic material. However, the distributions of the aforementioned forces inside materials may differ significantly. We adopt the concepts of infinitesimal particles and external electromagnetic fields to address this issue. Adopting these concepts enables the electromagnetic force densities inside dielectric or magnetic materials to be uniquely determined. We refer to this type of density as the locally defined electromagnetic force density (FLEM). This study primarily focuses on the derivation of F(LEM)• Subsequently, the distribution of FLEMis then demonstrated using simple numerical models.","PeriodicalId":439411,"journal":{"name":"2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC)","volume":"os-44 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 19th Biennial Conference on Electromagnetic Field Computation (CEFC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CEFC46938.2020.9451390","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

An object's shape may be deformed by a combination of gravitational, hydrostatic, mechanical, and electromagnetic forces. Therefore, to predict the deformation, it is necessary to know each force's distribution inside the object. Various expressions and methods, such as the Lorentz, Kelvin, generalized, and Korteweg-Helmholtz forces, can be used to calculate the electromagnetic force on a dielectric or magnetic material. However, the distributions of the aforementioned forces inside materials may differ significantly. We adopt the concepts of infinitesimal particles and external electromagnetic fields to address this issue. Adopting these concepts enables the electromagnetic force densities inside dielectric or magnetic materials to be uniquely determined. We refer to this type of density as the locally defined electromagnetic force density (FLEM). This study primarily focuses on the derivation of F(LEM)• Subsequently, the distribution of FLEMis then demonstrated using simple numerical models.
材料内部的局部定义电磁力密度
物体的形状可能在重力、流体静力、机械力和电磁力的共同作用下发生变形。因此,要预测变形,就必须知道物体内部各个力的分布。不同的表达式和方法,如洛伦兹力、开尔文力、广义力和Korteweg-Helmholtz力,可以用来计算电介质或磁性材料上的电磁力。然而,上述力在材料内部的分布可能会有很大的不同。我们采用无穷小粒子和外部电磁场的概念来解决这个问题。采用这些概念可以使电介质或磁性材料内部的电磁力密度得到唯一的确定。我们把这种密度称为局部定义的电磁力密度(FLEM)。本研究主要关注F(LEM)的推导。随后,使用简单的数值模型证明了FLEMis的分布。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信