Zhuo Huang, Haoqiang Fan, Chaoyi Cheng, Song Wu, Hai Jin
{"title":"Duo: Improving Data Sharing of Stateful Serverless Applications by Efficiently Caching Multi-Read Data","authors":"Zhuo Huang, Haoqiang Fan, Chaoyi Cheng, Song Wu, Hai Jin","doi":"10.1109/IPDPS54959.2023.00092","DOIUrl":null,"url":null,"abstract":"A growing number of applications are moving to serverless architectures for high elasticity and fine-grained billing. For stateful applications, however, the use of serverless architectures is likely to lead to significant performance degradation, as frequent data sharing between different execution stages involves time-consuming remote storage access. Current platforms leverage memory cache to speed up remote access. However, conventional caching strategies show limited performance improvement. We experimentally find that the reason is that current strategies overlook the stage-dependent access patterns of stateful serverless applications, i.e., data that are read multiple times across stages (denoted as multi-read data) are wrongly evicted by data that are read only once (denoted as read-once data), causing a high cache miss ratio.Accordingly, we propose a new caching strategy, Duo, whose design principle is to cache multi-read data as long as possible. Specifically, Duo contains a large cache list and a small cache list, which act as Leader list and Wingman list, respectively. Leader list ignores the data that is read for the first time to prevent itself from being polluted by massive read-once data at each stage. Wingman list inspects the data that are ignored or evicted by Leader list, and pre-fetches the data that will probably be read again based on the observation that multi-read data usually appear periodically in groups. Compared to the state-of-the-art works, Duo improves hit ratio by 1.1×-2.1× and reduces the data sharing overhead by 25%-62%.","PeriodicalId":343684,"journal":{"name":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Parallel and Distributed Processing Symposium (IPDPS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IPDPS54959.2023.00092","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
A growing number of applications are moving to serverless architectures for high elasticity and fine-grained billing. For stateful applications, however, the use of serverless architectures is likely to lead to significant performance degradation, as frequent data sharing between different execution stages involves time-consuming remote storage access. Current platforms leverage memory cache to speed up remote access. However, conventional caching strategies show limited performance improvement. We experimentally find that the reason is that current strategies overlook the stage-dependent access patterns of stateful serverless applications, i.e., data that are read multiple times across stages (denoted as multi-read data) are wrongly evicted by data that are read only once (denoted as read-once data), causing a high cache miss ratio.Accordingly, we propose a new caching strategy, Duo, whose design principle is to cache multi-read data as long as possible. Specifically, Duo contains a large cache list and a small cache list, which act as Leader list and Wingman list, respectively. Leader list ignores the data that is read for the first time to prevent itself from being polluted by massive read-once data at each stage. Wingman list inspects the data that are ignored or evicted by Leader list, and pre-fetches the data that will probably be read again based on the observation that multi-read data usually appear periodically in groups. Compared to the state-of-the-art works, Duo improves hit ratio by 1.1×-2.1× and reduces the data sharing overhead by 25%-62%.