Extended-Gate FET cortisol sensor for stress disorders based on aptamers-decorated graphene electrode: Fabrication, Experiments and Unified Analog Predictive Modeling

L. Capua, S. Sheibani, S. Kamaei, J. Zhang, A. Ionescu
{"title":"Extended-Gate FET cortisol sensor for stress disorders based on aptamers-decorated graphene electrode: Fabrication, Experiments and Unified Analog Predictive Modeling","authors":"L. Capua, S. Sheibani, S. Kamaei, J. Zhang, A. Ionescu","doi":"10.1109/IEDM13553.2020.9372063","DOIUrl":null,"url":null,"abstract":"In this work we report the fabrication, characterization and validation of a cortisol biosensor, together with a unified predictive calibrated model. We demonstrated the possibility of using a classical submicron semiconductor FET as the transducer for a cortisol biosensor, extending its gate with a graphene on platinum electrode decorated with cortisol specific aptamers. The sensor outperforms the so far any reported cortisol sensors, in terms of performance and integration capability: (i) we report sensor validation over 4 orders of concertation (1 nM - 10 μM, matching human sweat concentration range), (ii) with excellent voltage (14.7 mV/dec.) and current (80% relative change with respect baseline) sensitivity, (iii) low drift, smaller than 10 mV/h, (iv) low power consumption (sub-nW DC power), (v) record low detection limit (LOD) for cortisol of 0.2nM, and (vi) selectivity over other hormones such as testosterone. Moreover, we have developed and validated the first unified compact analog predictive calibrated model for cortisol FET sensors based on experimental data, valid from weak to strong inversion, and able to capture the output current dependence on hormone concentrations. In addition, this model is accurate in the prediction of ID, gm and transconductance efficiency, ID/gm, enabling simulation and optimization of analog design readout, together with power and signal-to-noise ratio trade-offs.","PeriodicalId":415186,"journal":{"name":"2020 IEEE International Electron Devices Meeting (IEDM)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM13553.2020.9372063","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this work we report the fabrication, characterization and validation of a cortisol biosensor, together with a unified predictive calibrated model. We demonstrated the possibility of using a classical submicron semiconductor FET as the transducer for a cortisol biosensor, extending its gate with a graphene on platinum electrode decorated with cortisol specific aptamers. The sensor outperforms the so far any reported cortisol sensors, in terms of performance and integration capability: (i) we report sensor validation over 4 orders of concertation (1 nM - 10 μM, matching human sweat concentration range), (ii) with excellent voltage (14.7 mV/dec.) and current (80% relative change with respect baseline) sensitivity, (iii) low drift, smaller than 10 mV/h, (iv) low power consumption (sub-nW DC power), (v) record low detection limit (LOD) for cortisol of 0.2nM, and (vi) selectivity over other hormones such as testosterone. Moreover, we have developed and validated the first unified compact analog predictive calibrated model for cortisol FET sensors based on experimental data, valid from weak to strong inversion, and able to capture the output current dependence on hormone concentrations. In addition, this model is accurate in the prediction of ID, gm and transconductance efficiency, ID/gm, enabling simulation and optimization of analog design readout, together with power and signal-to-noise ratio trade-offs.
基于适配体修饰石墨烯电极的应激障碍扩展栅极场效应晶体管皮质醇传感器:制造、实验和统一模拟预测建模
在这项工作中,我们报告了皮质醇生物传感器的制造,表征和验证,以及统一的预测校准模型。我们展示了使用经典的亚微米半导体场效应晶体管作为皮质醇生物传感器的换能器的可能性,并将其栅极扩展为石墨烯在铂电极上,并用皮质醇特异性适配体装饰。该传感器在性能和集成能力方面优于迄今为止任何报道的皮质醇传感器:(i)我们报告了传感器在4个量级浓度(1 nM - 10 μM,与人体汗液浓度范围相匹配)下的验证,(ii)具有优异的电压(14.7 mV/ 12)和电流(与基线相对变化80%)灵敏度,(iii)低漂移,小于10 mV/h, (iv)低功耗(亚nw直流功率),(v)对皮质醇的最低检测限(LOD)为0.2nM, (vi)优于其他激素(如睾酮)。此外,我们基于实验数据开发并验证了第一个统一的紧凑模拟预测校准皮质醇FET传感器模型,该模型从弱到强反转有效,并且能够捕获对激素浓度的输出电流依赖。此外,该模型在预测ID, gm和跨导效率,ID/gm方面是准确的,可以模拟和优化模拟设计读出,以及功率和信噪比权衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信