Fusible numbers and Peano Arithmetic

Jeff Erickson, Gabriel Nivasch, Junyan Xu
{"title":"Fusible numbers and Peano Arithmetic","authors":"Jeff Erickson, Gabriel Nivasch, Junyan Xu","doi":"10.1109/LICS52264.2021.9470703","DOIUrl":null,"url":null,"abstract":"Inspired by a mathematical riddle involving fuses, we define the fusible numbers as follows: 0 is fusible, and whenever x, y are fusible with |y − x| < 1, the number (x + y + 1)/2 is also fusible. We prove that the set of fusible numbers, ordered by the usual order on ℝ, is well-ordered, with order type ε0. Furthermore, we prove that the density of the fusible numbers along the real line grows at an incredibly fast rate: Letting g(n) be the largest gap between consecutive fusible numbers in the interval [n, ∞), we have $g{(n)^{ - 1}} \\geq {F_{{\\varepsilon _0}}}(n - c)$ for some constant c, where Fα denotes the fast-growing hierarchy.Finally, we derive some true statements that can be formulated but not proven in Peano Arithmetic, of a different flavor than previously known such statements: PA cannot prove the true statement \"For every natural number n there exists a smallest fusible number larger than n.\" Also, consider the algorithm \"M(x): if x < 0 return −x, else return M(x − M(x − 1))/2.\" Then M terminates on real inputs, although PA cannot prove the statement \"M terminates on all natural inputs.\"","PeriodicalId":174663,"journal":{"name":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","volume":"196 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LICS52264.2021.9470703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Inspired by a mathematical riddle involving fuses, we define the fusible numbers as follows: 0 is fusible, and whenever x, y are fusible with |y − x| < 1, the number (x + y + 1)/2 is also fusible. We prove that the set of fusible numbers, ordered by the usual order on ℝ, is well-ordered, with order type ε0. Furthermore, we prove that the density of the fusible numbers along the real line grows at an incredibly fast rate: Letting g(n) be the largest gap between consecutive fusible numbers in the interval [n, ∞), we have $g{(n)^{ - 1}} \geq {F_{{\varepsilon _0}}}(n - c)$ for some constant c, where Fα denotes the fast-growing hierarchy.Finally, we derive some true statements that can be formulated but not proven in Peano Arithmetic, of a different flavor than previously known such statements: PA cannot prove the true statement "For every natural number n there exists a smallest fusible number larger than n." Also, consider the algorithm "M(x): if x < 0 return −x, else return M(x − M(x − 1))/2." Then M terminates on real inputs, although PA cannot prove the statement "M terminates on all natural inputs."
易熔数和皮亚诺算术
受一个涉及熔断器的数学谜语的启发,我们定义了以下可熔数:0是可熔的,当x、y在|y−x| < 1时可熔时,(x + y + 1)/2也是可熔的。证明了可熔数集合是良序的,其阶型为ε0。进一步,我们证明了沿实线上可熔数的密度以令人难以置信的快速度增长:设g(n)为区间[n,∞)中连续可熔数之间的最大间隙,我们有$g{(n)^{ - 1}} \geq {F_{{\varepsilon _0}}}(n - c)$对于某个常数c,其中Fα表示快速增长的层次。最后,我们推导出一些可以用皮亚诺算术公式化但不能用皮亚诺算术证明的真命题,它们与以前已知的真命题不同:PA不能证明“对于每一个自然数n都存在一个大于n的最小可熔数”的真命题。同样,考虑算法“M(x):如果x < 0返回- x,否则返回M(x−M(x−1))/2”。那么M在真实输入上终止,尽管PA不能证明“M在所有自然输入上终止”。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信