Interview Choice Reveals Your Preference on the Market: To Improve Job-Resume Matching through Profiling Memories

Rui Yan, Ran Le, Yang Song, Tao Zhang, Xiangliang Zhang, Dongyan Zhao
{"title":"Interview Choice Reveals Your Preference on the Market: To Improve Job-Resume Matching through Profiling Memories","authors":"Rui Yan, Ran Le, Yang Song, Tao Zhang, Xiangliang Zhang, Dongyan Zhao","doi":"10.1145/3292500.3330963","DOIUrl":null,"url":null,"abstract":"Online recruitment services are now rapidly changing the landscape of hiring traditions on the job market. There are hundreds of millions of registered users with resumes, and tens of millions of job postings available on the Web. Learning good job-resume matching for recruitment services is important. Existing studies on job-resume matching generally focus on learning good representations of job descriptions and resume texts with comprehensive matching structures. We assume that it would bring benefits to learn the preference of both recruiters and job-seekers from previous interview histories and expect such preference is helpful to improve job-resume matching. To this end, in this paper, we propose a novel matching network with preference modeled. The key idea is to explore the latent preference given the history of all interviewed candidates for a job posting and the history of all job applications for a particular talent. To be more specific, we propose a profiling memory module to learn the latent preference representation by interacting with both the job and resume sides. We then incorporate the preference into the matching framework as an end-to-end learnable neural network. Based on the real-world data from an online recruitment platform namely \"Boss Zhipin\", the experimental results show that the proposed model could improve the job-resume matching performance against a series of state-of-the-art methods. In this way, we demonstrate that recruiters and talents indeed have preference and such preference can improve job-resume matching on the job market.","PeriodicalId":186134,"journal":{"name":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3292500.3330963","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

Abstract

Online recruitment services are now rapidly changing the landscape of hiring traditions on the job market. There are hundreds of millions of registered users with resumes, and tens of millions of job postings available on the Web. Learning good job-resume matching for recruitment services is important. Existing studies on job-resume matching generally focus on learning good representations of job descriptions and resume texts with comprehensive matching structures. We assume that it would bring benefits to learn the preference of both recruiters and job-seekers from previous interview histories and expect such preference is helpful to improve job-resume matching. To this end, in this paper, we propose a novel matching network with preference modeled. The key idea is to explore the latent preference given the history of all interviewed candidates for a job posting and the history of all job applications for a particular talent. To be more specific, we propose a profiling memory module to learn the latent preference representation by interacting with both the job and resume sides. We then incorporate the preference into the matching framework as an end-to-end learnable neural network. Based on the real-world data from an online recruitment platform namely "Boss Zhipin", the experimental results show that the proposed model could improve the job-resume matching performance against a series of state-of-the-art methods. In this way, we demonstrate that recruiters and talents indeed have preference and such preference can improve job-resume matching on the job market.
面试选择揭示你在市场上的偏好:通过分析记忆提高工作简历匹配度
在线招聘服务正在迅速改变就业市场上的招聘传统。网上有数以亿计的注册用户,他们有简历,也有数以千万计的招聘信息。学习好的简历匹配对于招聘服务很重要。现有的求职简历匹配研究一般侧重于学习具有综合匹配结构的职位描述和简历文本的良好表征。我们假设从以往的面试历史中了解招聘者和求职者的偏好会带来好处,并期望这种偏好有助于提高工作简历的匹配度。为此,本文提出了一种基于偏好模型的新型匹配网络。关键思想是在给定所有面试过的招聘候选人的历史和所有对特定人才的工作申请的历史的情况下,探索潜在的偏好。更具体地说,我们提出了一个分析记忆模块,通过与工作和简历双方交互来学习潜在的偏好表征。然后,我们将偏好合并到匹配框架中,作为端到端可学习的神经网络。基于在线招聘平台“Boss直聘”的真实数据,实验结果表明,该模型可以较好地提高求职简历匹配性能。通过这种方式,我们证明招聘者和人才确实存在偏好,这种偏好可以提高就业市场上的简历匹配度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信