A parallel method for finding the convex hull of discs

Wei Chen, K. Wada, K. Kawaguchi
{"title":"A parallel method for finding the convex hull of discs","authors":"Wei Chen, K. Wada, K. Kawaguchi","doi":"10.1109/ICAPP.1995.472195","DOIUrl":null,"url":null,"abstract":"We present a parallel method for finding the convex hull of a set of discs in the CREW PRAM model. We show that the convex hull of n discs can be computed in O(log/sup 1+/spl epsiv// n) time using O(n/log/sup /spl epsiv// n) processors, where /spl epsiv/ is any positive constant. We also show that it can be constructed in O(log n loglog n) time using O(n log n) processors. The first result achieves cost optimal and the second one runs faster. The main technique which we used in the algorithm is a complex divide-and-conquer technique.<<ETX>>","PeriodicalId":448130,"journal":{"name":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAPP.1995.472195","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

We present a parallel method for finding the convex hull of a set of discs in the CREW PRAM model. We show that the convex hull of n discs can be computed in O(log/sup 1+/spl epsiv// n) time using O(n/log/sup /spl epsiv// n) processors, where /spl epsiv/ is any positive constant. We also show that it can be constructed in O(log n loglog n) time using O(n log n) processors. The first result achieves cost optimal and the second one runs faster. The main technique which we used in the algorithm is a complex divide-and-conquer technique.<>
一种求圆盘凸包的平行方法
提出了一种求解CREW PRAM模型中一组圆盘凸壳的并行方法。我们证明了n个圆盘的凸包可以用O(n/log/sup /spl epsiv// n)处理器在O(log/sup 1+/spl epsiv// n)时间内计算出来,其中/spl epsiv/是任意正常数。我们也证明了它可以用O(n log n)个处理器在O(log n log n)个时间内构造出来。第一个结果达到成本最优,第二个结果运行得更快。我们在算法中使用的主要技术是一种复杂的分治技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信