Faster Pseudopolynomial Time Algorithms for Subset Sum

Konstantinos Koiliaris, Chao Xu
{"title":"Faster Pseudopolynomial Time Algorithms for Subset Sum","authors":"Konstantinos Koiliaris, Chao Xu","doi":"10.1145/3329863","DOIUrl":null,"url":null,"abstract":"Given a (multi) set S of n positive integers and a target integer u, the subset sum problem is to decide if there is a subset of S that sums up to u. We present a series of new algorithms that compute and return all the realizable subset sums up to the integer u in Õ(min { √nu,u5/4,σ }), where σ is the sum of all elements of S and Õ hides polylogarithmic factors. We also present a modified algorithm for integers modulo m, which computes all the realizable subset sums modulo m in Õ(min { √nm,m5/4}) time. Our contributions improve upon the standard dynamic programming algorithm that runs in O(nu) time. To the best of our knowledge, the new algorithms are the fastest deterministic algorithms for this problem. The new results can be employed in various algorithmic problems, from graph bipartition to computational social choice. Finally, we also improve a result on covering Zm, which might be of independent interest.","PeriodicalId":154047,"journal":{"name":"ACM Transactions on Algorithms (TALG)","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"40","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Algorithms (TALG)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3329863","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 40

Abstract

Given a (multi) set S of n positive integers and a target integer u, the subset sum problem is to decide if there is a subset of S that sums up to u. We present a series of new algorithms that compute and return all the realizable subset sums up to the integer u in Õ(min { √nu,u5/4,σ }), where σ is the sum of all elements of S and Õ hides polylogarithmic factors. We also present a modified algorithm for integers modulo m, which computes all the realizable subset sums modulo m in Õ(min { √nm,m5/4}) time. Our contributions improve upon the standard dynamic programming algorithm that runs in O(nu) time. To the best of our knowledge, the new algorithms are the fastest deterministic algorithms for this problem. The new results can be employed in various algorithmic problems, from graph bipartition to computational social choice. Finally, we also improve a result on covering Zm, which might be of independent interest.
子集和的更快伪多项式时间算法
给定一个由n个正整数组成的(多)集合S和一个目标整数u,子集和问题是决定是否存在S的一个子集和等于u。我们提出了一系列新的算法,计算并返回Õ(min{√nu,u5/4,σ})中所有可实现的子集和等于整数u,其中σ是S的所有元素的和,Õ隐藏了多对数因子。我们还提出了一个改进的整数模m算法,该算法在Õ(min{√nm,m5/4})时间内计算出模m的所有可实现的子集和。我们的贡献改进了在O(nu)时间内运行的标准动态规划算法。据我们所知,新算法是解决这个问题最快的确定性算法。新的结果可以应用于各种算法问题,从图的二分割到计算社会选择。最后,我们还改进了覆盖Zm的结果,这可能是一个独立的兴趣。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信