MoleHD: Efficient Drug Discovery using Brain Inspired Hyperdimensional Computing

Dongning Ma, Rahul Thapa, Xun Jiao
{"title":"MoleHD: Efficient Drug Discovery using Brain Inspired Hyperdimensional Computing","authors":"Dongning Ma, Rahul Thapa, Xun Jiao","doi":"10.1109/BIBM55620.2022.9995708","DOIUrl":null,"url":null,"abstract":"In this paper, we propose MoleHD, an efficient learning model based on brain-inspired hyperdimensional computing (HDC) for molecular property prediction. We develop HDC encoders to project SMILES representation of a molecule into high-dimensional vectors that are used for HDC training and inference. We perform an extensive evaluation using 29 classification tasks from 3 widely-used molecule datasets (Clintox, BBBP, SIDER) under three splits methods (random, scaffold, and stratified). By a comprehensive comparison with 8 existing learning models, we show that MoleHD achieves highest ROC-AUC score on random and scaffold splits on average across 3 datasets and achieve second-highest on stratified split. More importantly, MoleHD achieves such performance with significantly reduced computing cost: no back-propagation needed, only around 10 minutes training time using CPU.MoleHD is open-sourced and available at https://github.com/VU-DETAIL/MoleHD.","PeriodicalId":210337,"journal":{"name":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBM55620.2022.9995708","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we propose MoleHD, an efficient learning model based on brain-inspired hyperdimensional computing (HDC) for molecular property prediction. We develop HDC encoders to project SMILES representation of a molecule into high-dimensional vectors that are used for HDC training and inference. We perform an extensive evaluation using 29 classification tasks from 3 widely-used molecule datasets (Clintox, BBBP, SIDER) under three splits methods (random, scaffold, and stratified). By a comprehensive comparison with 8 existing learning models, we show that MoleHD achieves highest ROC-AUC score on random and scaffold splits on average across 3 datasets and achieve second-highest on stratified split. More importantly, MoleHD achieves such performance with significantly reduced computing cost: no back-propagation needed, only around 10 minutes training time using CPU.MoleHD is open-sourced and available at https://github.com/VU-DETAIL/MoleHD.
MoleHD:利用大脑启发的超维计算进行有效的药物发现
本文提出了一种基于脑启发超维计算(HDC)的高效学习模型MoleHD,用于分子性质预测。我们开发了HDC编码器,将分子的SMILES表示投影到用于HDC训练和推理的高维向量中。我们使用来自3个广泛使用的分子数据集(Clintox, BBBP, SIDER)的29个分类任务在三种分裂方法(随机,支架和分层)下进行了广泛的评估。通过与8个现有学习模型的综合比较,我们发现MoleHD在3个数据集上在随机和支架分裂上平均获得最高的ROC-AUC分数,在分层分裂上获得第二高的分数。更重要的是,MoleHD在显著降低计算成本的情况下实现了这样的性能:不需要反向传播,只需要大约10分钟的CPU训练时间。MoleHD是开源的,可以在https://github.com/VU-DETAIL/MoleHD上获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信