{"title":"Performance Evaluation of Feature Selection Algorithms in Educational Data Mining","authors":"C. Anuradha, T. Velmurugan","doi":"10.20894/IJDMTA.102.005.002.007","DOIUrl":null,"url":null,"abstract":": Educational Data mining(EDM)is a prominent field concerned with developing methods for exploring the unique and increasingly large scale data that come from educational settings and using those methods to better understand students in which they learn. It has been proved in various studies and by the previous study by the authors that data mining techniques find widespread applications in the educational decision making process for improving the performance of students in higher educational institutions. Classification techniques assumes significant importance in the machine learning tasks and are mostly employed in the prediction related problems. In machine learning problems, feature selection techniques are used to reduce the attributes of the class variables by removing the redundant and irrelevant features from the dataset. The aim of this research work is to compares the performance of various feature selection techniques is done using WEKA tool in the prediction of students’ performance in the final semester examination using different classification algorithms. Particularly J48, Naïve Bayes, Bayes Net, IBk, OneR, and JRip are used in this research work. The dataset for the study were collected from the student’s performance report of a private college in Tamil Nadu state of India. The effectiveness of various feature selection algorithms was compared with six classifiers and the results are discussed. The results of this study shows that the accuracy of IBK is 99.680% which is found to be high than other classifiers over the CFS subset evaluator. Also found that overall accuracy of CFS subset evaluator seems to be high than other feature selection algorithms. The future work will concentrate on the implementation of a proposed hybrid method by considering large dataset collected from many institutions.","PeriodicalId":414709,"journal":{"name":"International Journal of Data Mining Techniques and Applications","volume":"38 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Data Mining Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.20894/IJDMTA.102.005.002.007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 21
Abstract
: Educational Data mining(EDM)is a prominent field concerned with developing methods for exploring the unique and increasingly large scale data that come from educational settings and using those methods to better understand students in which they learn. It has been proved in various studies and by the previous study by the authors that data mining techniques find widespread applications in the educational decision making process for improving the performance of students in higher educational institutions. Classification techniques assumes significant importance in the machine learning tasks and are mostly employed in the prediction related problems. In machine learning problems, feature selection techniques are used to reduce the attributes of the class variables by removing the redundant and irrelevant features from the dataset. The aim of this research work is to compares the performance of various feature selection techniques is done using WEKA tool in the prediction of students’ performance in the final semester examination using different classification algorithms. Particularly J48, Naïve Bayes, Bayes Net, IBk, OneR, and JRip are used in this research work. The dataset for the study were collected from the student’s performance report of a private college in Tamil Nadu state of India. The effectiveness of various feature selection algorithms was compared with six classifiers and the results are discussed. The results of this study shows that the accuracy of IBK is 99.680% which is found to be high than other classifiers over the CFS subset evaluator. Also found that overall accuracy of CFS subset evaluator seems to be high than other feature selection algorithms. The future work will concentrate on the implementation of a proposed hybrid method by considering large dataset collected from many institutions.