Univariate Time Series Prediction of Reactive Power Using Deep Learning Techniques

N. Hossain, Syed Raihan Hossain, F. Azad
{"title":"Univariate Time Series Prediction of Reactive Power Using Deep Learning Techniques","authors":"N. Hossain, Syed Raihan Hossain, F. Azad","doi":"10.1109/ICREST.2019.8644160","DOIUrl":null,"url":null,"abstract":"To surmount the issue related to reactive part of produced power, it is imperative to predict its quantity of generation. Optimizing this back and forth energy flow will enlarge actual part of energy flow. Generating reactive part motives to gain the magnetic field voltage and conversely, no flow of reactive part impedes sending of requested energy. In this paper, two popular deep learning frameworks, Long Short-Term Memory (LSTM) and Artificial Neural Network (ANN) are adopted to forecast reactive part of generated power.","PeriodicalId":108842,"journal":{"name":"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)","volume":"30 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Robotics,Electrical and Signal Processing Techniques (ICREST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICREST.2019.8644160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

To surmount the issue related to reactive part of produced power, it is imperative to predict its quantity of generation. Optimizing this back and forth energy flow will enlarge actual part of energy flow. Generating reactive part motives to gain the magnetic field voltage and conversely, no flow of reactive part impedes sending of requested energy. In this paper, two popular deep learning frameworks, Long Short-Term Memory (LSTM) and Artificial Neural Network (ANN) are adopted to forecast reactive part of generated power.
基于深度学习技术的无功功率单变量时间序列预测
为了解决与发电无功部分有关的问题,必须对其发电量进行预测。优化这种来回的能量流,可以扩大能量流的实际部分。产生无功部分的动机以获得磁场电压,反之,无功部分的流动会阻碍所需能量的发送。本文采用长短期记忆(LSTM)和人工神经网络(ANN)两种流行的深度学习框架对发电无功部分进行预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信