{"title":"Distributed CONGEST Algorithm for Finding Hamiltonian Paths in Dirac Graphs and Generalizations","authors":"Noy Biton, R. Levi, Moti Medina","doi":"10.48550/arXiv.2302.00742","DOIUrl":null,"url":null,"abstract":"We study the problem of finding a Hamiltonian cycle under the promise that the input graph has a minimum degree of at least $n/2$, where $n$ denotes the number of vertices in the graph. The classical theorem of Dirac states that such graphs (a.k.a. Dirac graphs) are Hamiltonian, i.e., contain a Hamiltonian cycle. Moreover, finding a Hamiltonian cycle in Dirac graphs can be done in polynomial time in the classical centralized model. This paper presents a randomized distributed CONGEST algorithm that finds w.h.p. a Hamiltonian cycle (as well as maximum matching) within $O(\\log n)$ rounds under the promise that the input graph is a Dirac graph. This upper bound is in contrast to general graphs in which both the decision and search variants of Hamiltonicity require $\\tilde{\\Omega}(n^2)$ rounds, as shown by Bachrach et al. [PODC'19]. In addition, we consider two generalizations of Dirac graphs: Ore graphs and Rahman-Kaykobad graphs [IPL'05]. In Ore graphs, the sum of the degrees of every pair of non-adjacent vertices is at least $n$, and in Rahman-Kaykobad graphs, the sum of the degrees of every pair of non-adjacent vertices plus their distance is at least $n+1$. We show how our algorithm for Dirac graphs can be adapted to work for these more general families of graphs.","PeriodicalId":369104,"journal":{"name":"International Symposium on Mathematical Foundations of Computer Science","volume":"45 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Mathematical Foundations of Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2302.00742","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
We study the problem of finding a Hamiltonian cycle under the promise that the input graph has a minimum degree of at least $n/2$, where $n$ denotes the number of vertices in the graph. The classical theorem of Dirac states that such graphs (a.k.a. Dirac graphs) are Hamiltonian, i.e., contain a Hamiltonian cycle. Moreover, finding a Hamiltonian cycle in Dirac graphs can be done in polynomial time in the classical centralized model. This paper presents a randomized distributed CONGEST algorithm that finds w.h.p. a Hamiltonian cycle (as well as maximum matching) within $O(\log n)$ rounds under the promise that the input graph is a Dirac graph. This upper bound is in contrast to general graphs in which both the decision and search variants of Hamiltonicity require $\tilde{\Omega}(n^2)$ rounds, as shown by Bachrach et al. [PODC'19]. In addition, we consider two generalizations of Dirac graphs: Ore graphs and Rahman-Kaykobad graphs [IPL'05]. In Ore graphs, the sum of the degrees of every pair of non-adjacent vertices is at least $n$, and in Rahman-Kaykobad graphs, the sum of the degrees of every pair of non-adjacent vertices plus their distance is at least $n+1$. We show how our algorithm for Dirac graphs can be adapted to work for these more general families of graphs.