Hybrid Particle Swarm Optimization with parameter selection approaches to solve Flow Shop Scheduling Problem

Xuefeng Zhang, Xuanye An, M. Koshimura, H. Fujita, R. Hasegawa
{"title":"Hybrid Particle Swarm Optimization with parameter selection approaches to solve Flow Shop Scheduling Problem","authors":"Xuefeng Zhang, Xuanye An, M. Koshimura, H. Fujita, R. Hasegawa","doi":"10.1109/CIS.2011.6169128","DOIUrl":null,"url":null,"abstract":"A Hybrid Particle Swarm Optimization (HPSO) with parameter selection approaches is proposed to solve Flow Shop Scheduling Problem (FSSP) with the objective of minimizing makespan. The HPSO integrates the basic structure of a Particle Swarm Optimization (PSO) together with features borrowed from the fields of Tabu Search (TS), Simulated Annealing (SA). The algorithm works from a population of candidate schedules and generates new populations of neighbor and cooling schedules by applying suitable small perturbation schemes. Furthermore, PSO is very sensitive to efficient parameter setting such that modifying a single parameter may cause a considerable change in the result. Another two classes of new adaptive selection of value for inertia weight and acceleration coefficients are introduced into it. Extensive experiments on different scale benchmarks validate the effectiveness of our approaches, compared with other well-established methods. The experimental results show that new upper bounds of some unsolved problems and better solutions in a relatively reasonable time. In addition, proposed algorithms converge to stopping criteria significantly faster.","PeriodicalId":286889,"journal":{"name":"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 10th International Conference on Cybernetic Intelligent Systems (CIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIS.2011.6169128","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Hybrid Particle Swarm Optimization (HPSO) with parameter selection approaches is proposed to solve Flow Shop Scheduling Problem (FSSP) with the objective of minimizing makespan. The HPSO integrates the basic structure of a Particle Swarm Optimization (PSO) together with features borrowed from the fields of Tabu Search (TS), Simulated Annealing (SA). The algorithm works from a population of candidate schedules and generates new populations of neighbor and cooling schedules by applying suitable small perturbation schemes. Furthermore, PSO is very sensitive to efficient parameter setting such that modifying a single parameter may cause a considerable change in the result. Another two classes of new adaptive selection of value for inertia weight and acceleration coefficients are introduced into it. Extensive experiments on different scale benchmarks validate the effectiveness of our approaches, compared with other well-established methods. The experimental results show that new upper bounds of some unsolved problems and better solutions in a relatively reasonable time. In addition, proposed algorithms converge to stopping criteria significantly faster.
基于参数选择的混合粒子群算法求解流水车间调度问题
针对以最大完工时间最小化为目标的流水车间调度问题,提出了一种参数选择的混合粒子群优化算法。该算法将粒子群算法的基本结构与禁忌搜索(TS)、模拟退火(SA)等算法的特征相结合。该算法从一个候选调度种群开始工作,并通过应用合适的小扰动格式生成新的相邻调度种群和冷却调度种群。此外,PSO对有效的参数设置非常敏感,因此修改单个参数可能会导致结果发生相当大的变化。另外还引入了惯性权重和加速度系数两类新的自适应取值方法。与其他成熟的方法相比,在不同规模基准上进行的大量实验验证了我们方法的有效性。实验结果表明,在相对合理的时间内给出了一些未解问题的新上界和较好的解。此外,所提算法收敛到停止准则的速度显著加快。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信