Concavity Method: A concise survey

Lakshmipriya Narayanan, G. Soundararajan
{"title":"Concavity Method: A concise survey","authors":"Lakshmipriya Narayanan, G. Soundararajan","doi":"10.17993/3cemp.2022.110250.94-102","DOIUrl":null,"url":null,"abstract":"This short review article discusses the concavity method, one of the most effective ways to deal with parabolic equations with unbounded solutions in finite time. If the solution ceases to exist for some time, we say it blows up. The solution or some of its derivatives become singular depending on the equation. We focus on situations where the solution becomes unbounded in finite time, and our objective is to review some of the key blowup theory papers utilising the concavity method.","PeriodicalId":365908,"journal":{"name":"3C Empresa. Investigación y pensamiento crítico","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"3C Empresa. Investigación y pensamiento crítico","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17993/3cemp.2022.110250.94-102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This short review article discusses the concavity method, one of the most effective ways to deal with parabolic equations with unbounded solutions in finite time. If the solution ceases to exist for some time, we say it blows up. The solution or some of its derivatives become singular depending on the equation. We focus on situations where the solution becomes unbounded in finite time, and our objective is to review some of the key blowup theory papers utilising the concavity method.
凹形法:一个简明的调查
本文讨论了在有限时间内求解具有无界解的抛物型方程的最有效方法之一——凹性法。如果解决方案在一段时间内不存在,我们就说它爆炸了。它的解或者它的一些导数都是奇异的,这取决于方程。我们的重点是在有限时间内解变得无界的情况下,我们的目标是回顾一些利用凹性方法的关键爆破理论论文。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信