A Reconfigurable 1T1C eDRAM-based Spiking Neural Network Computing-In-Memory Processor for High System-Level Efficiency

Seryeong Kim, Soyeon Kim, Soyeon Um, Sangjin Kim, Zhiyong Li, Sanyeob Kim, Wooyoung Jo, H.-J. Yoo
{"title":"A Reconfigurable 1T1C eDRAM-based Spiking Neural Network Computing-In-Memory Processor for High System-Level Efficiency","authors":"Seryeong Kim, Soyeon Kim, Soyeon Um, Sangjin Kim, Zhiyong Li, Sanyeob Kim, Wooyoung Jo, H.-J. Yoo","doi":"10.1109/ISCAS46773.2023.10181420","DOIUrl":null,"url":null,"abstract":"Spiking Neural Network (SNN) Computing-In-Memory (CIM) was proposed for high macro-level energy efficiency. However, system-level energy efficiency is limited by EMA due to a large intermediate activation footprint requirement. To reduce the EMA, a large capacity SNN CIM is needed to load tons of weights in the CIM. This paper proposes a high-density 1T1C eDRAM-based SNN CIM processor for supporting high system-level energy efficiency with two key features: 1) High-density and low-power Reconfigurable Neuro-Cell Array (ReNCA) for memory and SNN peripheral logic using a charge pump and reusing 1T1C cell array, achieving 41% area and 90% power reduction compared to previous work. 2) Reconfigurable CIM architecture with dual-mode ReNCA and Dynamic Adjustable Neuron Link (DAN Link) for layer fusion increases system-level efficiency including intermediate and weight EMA. It achieves $10\\times$ higher state-of-the-art system-level energy efficiency including EMA.","PeriodicalId":177320,"journal":{"name":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Symposium on Circuits and Systems (ISCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS46773.2023.10181420","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Spiking Neural Network (SNN) Computing-In-Memory (CIM) was proposed for high macro-level energy efficiency. However, system-level energy efficiency is limited by EMA due to a large intermediate activation footprint requirement. To reduce the EMA, a large capacity SNN CIM is needed to load tons of weights in the CIM. This paper proposes a high-density 1T1C eDRAM-based SNN CIM processor for supporting high system-level energy efficiency with two key features: 1) High-density and low-power Reconfigurable Neuro-Cell Array (ReNCA) for memory and SNN peripheral logic using a charge pump and reusing 1T1C cell array, achieving 41% area and 90% power reduction compared to previous work. 2) Reconfigurable CIM architecture with dual-mode ReNCA and Dynamic Adjustable Neuron Link (DAN Link) for layer fusion increases system-level efficiency including intermediate and weight EMA. It achieves $10\times$ higher state-of-the-art system-level energy efficiency including EMA.
高系统级效率的可重构1T1C edram脉冲神经网络内存计算处理器
为了提高宏观能源效率,提出了峰值神经网络(SNN)内存计算(CIM)。然而,系统级的能源效率受到EMA的限制,因为需要大量的中间激活足迹。为了减少EMA,需要大容量SNN CIM在CIM中加载吨重。本文提出了一种基于1T1C edram的高密度SNN CIM处理器,该处理器支持高系统级能效,具有两个关键特征:1)高密度低功耗可重构神经细胞阵列(ReNCA)用于存储器和SNN外设逻辑,使用电荷泵和重复使用1T1C细胞阵列,与以前的工作相比,实现了41%的面积和90%的功耗降低。2)可重构CIM架构,采用双模ReNCA和动态可调神经元链路(DAN Link)进行层融合,提高了系统级效率,包括中间和权重EMA。它实现了包括EMA在内的最高10倍的最先进的系统级能源效率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信