Enhancing embedded AI-based object detection using multi-view approach

Z. Ning, Mostafa Rizk, A. Baghdadi, J. Diguet
{"title":"Enhancing embedded AI-based object detection using multi-view approach","authors":"Z. Ning, Mostafa Rizk, A. Baghdadi, J. Diguet","doi":"10.1109/RSP57251.2022.10039026","DOIUrl":null,"url":null,"abstract":"Object detection based on convolutional neural network (CNN) is widely used in multitude emergent applications. Yet, the deployment of CNNs on embedded devices at the edge with reduced resources and power budget poses a real challenge. In this paper, we address this issue by enhancing the detection performance without impacting the inference speed. We investigate the use of multi-view for the same scene to achieve better detection performance. A novel system of distributed smart cameras is proposed where each camera integrates a CNN for detection. Implementation results show that using light networks on the distributed cameras can lead to better detection performance and a reduction in the overall consumed power.","PeriodicalId":201919,"journal":{"name":"2022 IEEE International Workshop on Rapid System Prototyping (RSP)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Workshop on Rapid System Prototyping (RSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RSP57251.2022.10039026","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Object detection based on convolutional neural network (CNN) is widely used in multitude emergent applications. Yet, the deployment of CNNs on embedded devices at the edge with reduced resources and power budget poses a real challenge. In this paper, we address this issue by enhancing the detection performance without impacting the inference speed. We investigate the use of multi-view for the same scene to achieve better detection performance. A novel system of distributed smart cameras is proposed where each camera integrates a CNN for detection. Implementation results show that using light networks on the distributed cameras can lead to better detection performance and a reduction in the overall consumed power.
利用多视图方法增强嵌入式人工智能目标检测
基于卷积神经网络(CNN)的目标检测在众多突发事件中得到了广泛的应用。然而,在资源和功耗预算减少的边缘嵌入式设备上部署cnn是一个真正的挑战。在本文中,我们通过在不影响推理速度的情况下提高检测性能来解决这个问题。我们研究了对同一场景使用多视图来获得更好的检测性能。提出了一种新型的分布式智能摄像机系统,每个摄像机集成一个CNN进行检测。实现结果表明,在分布式摄像机上使用光网络可以获得更好的检测性能并降低总体功耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信