Fixed Point Theory in Fuzzy Normed Linear Spaces: A General View

S. Dzitac, H. Oros, D. Deac, Sorin Nădăban
{"title":"Fixed Point Theory in Fuzzy Normed Linear Spaces: A General View","authors":"S. Dzitac, H. Oros, D. Deac, Sorin Nădăban","doi":"10.15837/ijccc.2021.6.4587","DOIUrl":null,"url":null,"abstract":"In this paper we have presented, firstly, an evolution of the concept of fuzzy normed linear spaces, different definitions, approaches as well as generalizations. A special section is dedicated to fuzzy Banach spaces. In the case of fuzzy normed linear spaces, researchers have been working, until now, with a definition of completeness inspired by M. Grabiec’s work in the context of fuzzy metric spaces. We propose another definition and we prove that it is much more adequate, inspired by the work of A.George and P. Veeramani. Finally, some important results in fuzzy fixed point theory were highlighted.","PeriodicalId":179619,"journal":{"name":"Int. J. Comput. Commun. Control","volume":"os-22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Comput. Commun. Control","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.15837/ijccc.2021.6.4587","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper we have presented, firstly, an evolution of the concept of fuzzy normed linear spaces, different definitions, approaches as well as generalizations. A special section is dedicated to fuzzy Banach spaces. In the case of fuzzy normed linear spaces, researchers have been working, until now, with a definition of completeness inspired by M. Grabiec’s work in the context of fuzzy metric spaces. We propose another definition and we prove that it is much more adequate, inspired by the work of A.George and P. Veeramani. Finally, some important results in fuzzy fixed point theory were highlighted.
模糊赋范线性空间中的不动点理论
本文首先给出了模糊赋范线性空间概念的演变、不同的定义、方法和推广。一个特殊的部分专门用于模糊巴拿赫空间。在模糊赋范线性空间的情况下,研究人员一直在研究,直到现在,在模糊度量空间的背景下,受M. Grabiec工作的启发,对完备性的定义。我们提出了另一个定义,并证明它是更充分的,灵感来自a.g orge和p.v eramani的工作。最后,重点介绍了模糊不动点理论的一些重要结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信