A hybrid super resolution technique using adaptive sharpening algorithm based on steering kernel regression for restoration

A. Geetha Devi, T. Madhu, K. Lal Kishore
{"title":"A hybrid super resolution technique using adaptive sharpening algorithm based on steering kernel regression for restoration","authors":"A. Geetha Devi, T. Madhu, K. Lal Kishore","doi":"10.1109/CNT.2014.7062730","DOIUrl":null,"url":null,"abstract":"A conceptually simple hybrid Super Resolution (SR) algorithm is proposed using an adaptive edge sharpening algorithm. Most of the existing Super resolution algorithms are not robust to handle the high noisy conditions due to the ambiguity between the sharpening and denoising processes. The Low Resolution (LR) images are applied with the adaptive edge sharpening algorithm that is capable of capturing the local image statistics and adjusts the sharpening process accordingly. The restored LR images are then registered using Scale Invariant Feature Transform (SIFT) based registration to position all LR pixel values to a common spatial grid. The registered LR images are fused using Singular Value Decomposition (SVD) based Fusion algorithm. The experimental results show the efficacy of the developed algorithm, produces better results than the existing algorithms under high noisy conditions.","PeriodicalId":347883,"journal":{"name":"2014 International Conference on Communication and Network Technologies","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Network Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNT.2014.7062730","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A conceptually simple hybrid Super Resolution (SR) algorithm is proposed using an adaptive edge sharpening algorithm. Most of the existing Super resolution algorithms are not robust to handle the high noisy conditions due to the ambiguity between the sharpening and denoising processes. The Low Resolution (LR) images are applied with the adaptive edge sharpening algorithm that is capable of capturing the local image statistics and adjusts the sharpening process accordingly. The restored LR images are then registered using Scale Invariant Feature Transform (SIFT) based registration to position all LR pixel values to a common spatial grid. The registered LR images are fused using Singular Value Decomposition (SVD) based Fusion algorithm. The experimental results show the efficacy of the developed algorithm, produces better results than the existing algorithms under high noisy conditions.
一种基于转向核回归的自适应锐化混合超分辨复原技术
利用自适应边缘锐化算法提出了一种概念简单的混合超分辨率(SR)算法。现有的超分辨率算法由于锐化和去噪过程之间的模糊性,在处理高噪声条件下,具有较强的鲁棒性。低分辨率(LR)图像应用自适应边缘锐化算法,该算法能够捕获图像的局部统计量并相应地调整锐化过程。然后使用基于尺度不变特征变换(SIFT)的配准对恢复的LR图像进行配准,将所有LR像素值定位到公共空间网格。采用基于奇异值分解(SVD)的融合算法对配准的LR图像进行融合。实验结果表明,该算法在高噪声条件下比现有算法具有更好的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信