Interface Implementation for Quantifying Information Spread on Social Networks

Prajakta Kumbhojkar, Masumi Jain, Rajalakshmi E, Shyamsalonee Rawal, Sneha K. Thombre
{"title":"Interface Implementation for Quantifying Information Spread on Social Networks","authors":"Prajakta Kumbhojkar, Masumi Jain, Rajalakshmi E, Shyamsalonee Rawal, Sneha K. Thombre","doi":"10.1109/MITE.2018.8747013","DOIUrl":null,"url":null,"abstract":"Social media today, has grown into a vital facet of modern human existence. A remarkable amount of the information reaching us comes in the form of posts and messages on social media. As a result of the ever-growing social media, it has turned into an essential scheme for viral marketing and influencing the masses. Hence, it becomes imperative to discern how information spreads on such networks and how much. The methodology suggested in the Restrained-Susceptible-Infected-Recovered (RnSIR) Model enables us to calibrate the spread of knowledge and material on networks. This paper proposes an interface which uses the calculations given by the RnSIR model. Essentially, this interface prompts users to give a network interaction data set as the input and outputs the information dispersion on inputted network. It uses the same algorithms to do this as the RnSIR model.","PeriodicalId":426754,"journal":{"name":"2018 IEEE 6th International Conference on MOOCs, Innovation and Technology in Education (MITE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 6th International Conference on MOOCs, Innovation and Technology in Education (MITE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MITE.2018.8747013","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Social media today, has grown into a vital facet of modern human existence. A remarkable amount of the information reaching us comes in the form of posts and messages on social media. As a result of the ever-growing social media, it has turned into an essential scheme for viral marketing and influencing the masses. Hence, it becomes imperative to discern how information spreads on such networks and how much. The methodology suggested in the Restrained-Susceptible-Infected-Recovered (RnSIR) Model enables us to calibrate the spread of knowledge and material on networks. This paper proposes an interface which uses the calculations given by the RnSIR model. Essentially, this interface prompts users to give a network interaction data set as the input and outputs the information dispersion on inputted network. It uses the same algorithms to do this as the RnSIR model.
量化社交网络信息传播的接口实现
今天的社交媒体已经发展成为现代人类生存的一个重要方面。我们收到的大量信息是以社交媒体上的帖子和信息的形式出现的。随着社交媒体的不断发展,它已经成为病毒式营销和影响大众的重要方案。因此,必须辨别信息是如何在这样的网络上传播的,以及传播了多少。在“受限-易感-感染-恢复”(RnSIR)模型中提出的方法使我们能够校准网络上知识和材料的传播。本文提出了一个使用RnSIR模型计算的接口。该界面本质上是提示用户给出一个网络交互数据集作为输入,输出输入网络上的信息弥散。它使用与RnSIR模型相同的算法来完成此操作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信