Data Augmentation for Convolutional Neural Network DeepFake Image Detection

Ameni Jellali, I. Fredj, K. Ouni
{"title":"Data Augmentation for Convolutional Neural Network DeepFake Image Detection","authors":"Ameni Jellali, I. Fredj, K. Ouni","doi":"10.1109/IC_ASET58101.2023.10150803","DOIUrl":null,"url":null,"abstract":"We need to develop a technique for better identifying deepfakes because they can distort our perception of reality. This study offers a brand-new forensic technique for spotting falsified facial photos. We made advantage of the Kaggle- provided “real-and - fake- facial-detection” dataset. We are able to distinguish between probable facial alterations based on CNN's design. Thanks to data augmentation approaches, the results exhibit performances that are equivalent to those of previous works. The proposed approach fared better for this binary categorization into fake or real faces than the other cutting-edge studies. Our accuracy is close to 99 percent.","PeriodicalId":272261,"journal":{"name":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 IEEE International Conference on Advanced Systems and Emergent Technologies (IC_ASET)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC_ASET58101.2023.10150803","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We need to develop a technique for better identifying deepfakes because they can distort our perception of reality. This study offers a brand-new forensic technique for spotting falsified facial photos. We made advantage of the Kaggle- provided “real-and - fake- facial-detection” dataset. We are able to distinguish between probable facial alterations based on CNN's design. Thanks to data augmentation approaches, the results exhibit performances that are equivalent to those of previous works. The proposed approach fared better for this binary categorization into fake or real faces than the other cutting-edge studies. Our accuracy is close to 99 percent.
卷积神经网络深度假图像检测的数据增强
我们需要开发一种技术来更好地识别深度伪造,因为它们会扭曲我们对现实的感知。本研究为识别伪造的面部照片提供了一种全新的法医技术。我们利用了Kaggle提供的“真假面部检测”数据集。我们能够根据CNN的设计区分可能的面部变化。由于采用了数据增强方法,结果显示出与以前工作相当的性能。与其他前沿研究相比,该方法对假脸和真脸的二元分类效果更好。我们的准确率接近99%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信