Parallel ant colony algorithm for mining classification rules

Yixin Chen, Ling Chen, Li Tu
{"title":"Parallel ant colony algorithm for mining classification rules","authors":"Yixin Chen, Ling Chen, Li Tu","doi":"10.1109/GRC.2006.1635763","DOIUrl":null,"url":null,"abstract":"mining classification rules is presented. In the algorithm, each processor is assigned a class label which indicates the consequent parts of the rules it should discover. A group of ants are allocated on each processor to search for the antecedent part of the rules. The ants select the values of the attributes according to the importance of each attribute to the class, the pheromone, and heuristic information. Experimental results on several benchmark datasets show that our algorithm can discover classification rules faster with significantly better accuracy and less redundancy than other methods including the improved Ant-Miner method and the decision-tree-based C4.5 algorithm.","PeriodicalId":400997,"journal":{"name":"2006 IEEE International Conference on Granular Computing","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"17","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE International Conference on Granular Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GRC.2006.1635763","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 17

Abstract

mining classification rules is presented. In the algorithm, each processor is assigned a class label which indicates the consequent parts of the rules it should discover. A group of ants are allocated on each processor to search for the antecedent part of the rules. The ants select the values of the attributes according to the importance of each attribute to the class, the pheromone, and heuristic information. Experimental results on several benchmark datasets show that our algorithm can discover classification rules faster with significantly better accuracy and less redundancy than other methods including the improved Ant-Miner method and the decision-tree-based C4.5 algorithm.
并行蚁群算法挖掘分类规则
提出了挖掘分类规则。在该算法中,每个处理器被分配一个类标签,该类标签表示它应该发现的规则的后续部分。在每个处理器上分配一组蚂蚁来搜索规则的先行部分。蚂蚁根据每个属性对类、信息素和启发式信息的重要性来选择属性的值。在多个基准数据集上的实验结果表明,与改进的Ant-Miner方法和基于决策树的C4.5算法相比,该算法能够更快地发现分类规则,且准确率显著提高,冗余度更低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信