Denoising of SAR images using Maximum Likelihood Estimation

J. J. Nair, Bindhya Bhadran
{"title":"Denoising of SAR images using Maximum Likelihood Estimation","authors":"J. J. Nair, Bindhya Bhadran","doi":"10.1109/ICCSP.2014.6949964","DOIUrl":null,"url":null,"abstract":"Image denoising is an important problem in image processing because noise may interfere with visual interpretation. This may create problems in certain applications like classification problem, pattern matching, etc. This paper presents a new approach for image denoising in the case of speckle noise models. The proposed method is a modification of Non Local Means filter method using Maximum Likelihood Estimation. The Non Local Means algorithm performs a weighted average of the similar pixels. Here we introduce a method that performs weighted average on restricted local neighborhoods. More over the method performs weight calculation using Geman-McClure estimation function rather than the exponential function because of the fact that Geman-McClure estimator is better in preserving edge details than the exponential function. Experiments at various noise levels based on PSNR values and SSIM values show that the proposed method outperforms the existing methods and thereby increasing the accuracy of further processing for synthetic aperture radar (SAR) images.","PeriodicalId":149965,"journal":{"name":"2014 International Conference on Communication and Signal Processing","volume":"os-3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Communication and Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCSP.2014.6949964","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Image denoising is an important problem in image processing because noise may interfere with visual interpretation. This may create problems in certain applications like classification problem, pattern matching, etc. This paper presents a new approach for image denoising in the case of speckle noise models. The proposed method is a modification of Non Local Means filter method using Maximum Likelihood Estimation. The Non Local Means algorithm performs a weighted average of the similar pixels. Here we introduce a method that performs weighted average on restricted local neighborhoods. More over the method performs weight calculation using Geman-McClure estimation function rather than the exponential function because of the fact that Geman-McClure estimator is better in preserving edge details than the exponential function. Experiments at various noise levels based on PSNR values and SSIM values show that the proposed method outperforms the existing methods and thereby increasing the accuracy of further processing for synthetic aperture radar (SAR) images.
基于极大似然估计的SAR图像去噪
图像去噪是图像处理中的一个重要问题,因为噪声会干扰视觉判读。这可能会在某些应用程序中产生问题,如分类问题、模式匹配等。本文提出了一种适用于散斑噪声模型的图像去噪方法。该方法是一种基于极大似然估计的非局部均值滤波方法的改进。非局部均值算法对相似像素进行加权平均。本文介绍了一种对受限局部邻域进行加权平均的方法。此外,该方法使用Geman-McClure估计函数而不是指数函数进行权值计算,因为Geman-McClure估计函数比指数函数更能保留边缘细节。基于PSNR值和SSIM值的不同噪声水平下的实验表明,该方法优于现有方法,从而提高了合成孔径雷达(SAR)图像进一步处理的精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信