Daniel Hallmans, Kristian Sandström, Thomas Nolte, S. Larsson
{"title":"Consistent sensor values on a real-time ethernet network","authors":"Daniel Hallmans, Kristian Sandström, Thomas Nolte, S. Larsson","doi":"10.1109/WFCS.2016.7496499","DOIUrl":null,"url":null,"abstract":"Industrial control systems often exhibit a need for short latencies and/or consistent data gathering. In a system with limited resources it is a challenge to achieve the combination of short latencies and consistent data. In this paper we propose three different architectural solutions to this challenge, each having different trade-offs: one that gives a consistent set of data and also a short latency but with a higher resource usage, a second alternative that reduces resource needs but at the cost of an increased latency, and a third and final solution that reduces resource needs to a minimum but in doing so also increasing the latency. The results presented in this paper suggest that it is possible to get low latency and robustness at the cost of performance.","PeriodicalId":413770,"journal":{"name":"2016 IEEE World Conference on Factory Communication Systems (WFCS)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE World Conference on Factory Communication Systems (WFCS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WFCS.2016.7496499","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Industrial control systems often exhibit a need for short latencies and/or consistent data gathering. In a system with limited resources it is a challenge to achieve the combination of short latencies and consistent data. In this paper we propose three different architectural solutions to this challenge, each having different trade-offs: one that gives a consistent set of data and also a short latency but with a higher resource usage, a second alternative that reduces resource needs but at the cost of an increased latency, and a third and final solution that reduces resource needs to a minimum but in doing so also increasing the latency. The results presented in this paper suggest that it is possible to get low latency and robustness at the cost of performance.