Deep Genetic Programming

Lino Rodríguez
{"title":"Deep Genetic Programming","authors":"Lino Rodríguez","doi":"10.52591/lxai2019061512","DOIUrl":null,"url":null,"abstract":"We propose to develop a Deep Learning (DL) framework based on the paradigm of Genetic Programming (GP). The hypothesis is that GP non-parametric and non-differentiable learning units (abstract syntax trees) have the same learning and representation capacity to Artificial Neural Networks (ANN). In an analogy to the traditional ANN/Gradient Descend/Backpropagation DL approach, the proposed framework aims at building a DL alike model fully based on GP. Preliminary results when approaching a number of application domains, suggest that GP is able to deal with large amounts of training data, such as those required in DL tasks. However, extensive research is still required regarding the construction of a multi-layered learning architecture, another hallmark of DL.","PeriodicalId":402227,"journal":{"name":"LatinX in AI at International Conference on Machine Learning 2019","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"LatinX in AI at International Conference on Machine Learning 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52591/lxai2019061512","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We propose to develop a Deep Learning (DL) framework based on the paradigm of Genetic Programming (GP). The hypothesis is that GP non-parametric and non-differentiable learning units (abstract syntax trees) have the same learning and representation capacity to Artificial Neural Networks (ANN). In an analogy to the traditional ANN/Gradient Descend/Backpropagation DL approach, the proposed framework aims at building a DL alike model fully based on GP. Preliminary results when approaching a number of application domains, suggest that GP is able to deal with large amounts of training data, such as those required in DL tasks. However, extensive research is still required regarding the construction of a multi-layered learning architecture, another hallmark of DL.
深度遗传规划
我们建议开发一个基于遗传规划(GP)范式的深度学习(DL)框架。假设GP非参数和不可微学习单元(抽象语法树)具有与人工神经网络(ANN)相同的学习和表示能力。与传统的人工神经网络/梯度下降/反向传播深度学习方法类似,该框架旨在建立一个完全基于GP的深度学习模型。在接近许多应用领域时,初步结果表明GP能够处理大量的训练数据,例如DL任务中所需的数据。然而,关于多层学习架构(DL的另一个标志)的构建,仍然需要进行广泛的研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信