{"title":"Integrating Spectral-CF and FP-Growth for Recommendation","authors":"H. Zhang, Yu Liu, Keyin Cao","doi":"10.1145/3377817.3377845","DOIUrl":null,"url":null,"abstract":"In the era of information overload, both information consumers and information producers have encountered great challenges: for information consumers, it is very difficult to find information of interest from a large amount of information. The recommendation system is an important tool to resolve this contradiction. Despite the popularity of Collaborative Filtering (CF), CF-based methods are haunted by the cold-start and data sparseness problems. This paper took commodity recommendation as to the research object and proposed a recommendation algorithm that combines Spectral-CF and FP-Growth. Firstly, Firstly, the association rule algorithm FP-Growth is mine the association rules of the target user and the target item directly, and recommend the collection of items with higher similarity for the user. Secondly, using a spectral collaborative filtering algorithm Perform convolution operations in the spectral domain. Finally, providing the final result by combining the Spectral-CF and FP-Growth recommendation. The experimental results on the MovieLens dataset show that the proposed method can better solve the problem of data sparseness and cold-start problems, improvement the accuracy of recommendation.","PeriodicalId":343999,"journal":{"name":"Proceedings of the 2019 2nd International Conference on E-Business, Information Management and Computer Science","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2019 2nd International Conference on E-Business, Information Management and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3377817.3377845","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4
Abstract
In the era of information overload, both information consumers and information producers have encountered great challenges: for information consumers, it is very difficult to find information of interest from a large amount of information. The recommendation system is an important tool to resolve this contradiction. Despite the popularity of Collaborative Filtering (CF), CF-based methods are haunted by the cold-start and data sparseness problems. This paper took commodity recommendation as to the research object and proposed a recommendation algorithm that combines Spectral-CF and FP-Growth. Firstly, Firstly, the association rule algorithm FP-Growth is mine the association rules of the target user and the target item directly, and recommend the collection of items with higher similarity for the user. Secondly, using a spectral collaborative filtering algorithm Perform convolution operations in the spectral domain. Finally, providing the final result by combining the Spectral-CF and FP-Growth recommendation. The experimental results on the MovieLens dataset show that the proposed method can better solve the problem of data sparseness and cold-start problems, improvement the accuracy of recommendation.