Dynamic mutant subsumption analysis using LittleDarwin

Ali Parsai, S. Demeyer
{"title":"Dynamic mutant subsumption analysis using LittleDarwin","authors":"Ali Parsai, S. Demeyer","doi":"10.1145/3121245.3121249","DOIUrl":null,"url":null,"abstract":"Many academic studies in the field of software testing rely on mutation testing to use as their comparison criteria. However, recent studies have shown that redundant mutants have a significant effect on the accuracy of their results. One solution to this problem is to use mutant subsumption to detect redundant mutants. Therefore, in order to facilitate research in this field, a mutation testing tool that is capable of detecting redundant mutants is needed. In this paper, we describe how we improved our tool, LittleDarwin, to fulfill this requirement.","PeriodicalId":107820,"journal":{"name":"Proceedings of the 8th ACM SIGSOFT International Workshop on Automated Software Testing","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 8th ACM SIGSOFT International Workshop on Automated Software Testing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3121245.3121249","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Many academic studies in the field of software testing rely on mutation testing to use as their comparison criteria. However, recent studies have shown that redundant mutants have a significant effect on the accuracy of their results. One solution to this problem is to use mutant subsumption to detect redundant mutants. Therefore, in order to facilitate research in this field, a mutation testing tool that is capable of detecting redundant mutants is needed. In this paper, we describe how we improved our tool, LittleDarwin, to fulfill this requirement.
使用LittleDarwin进行动态突变包容分析
软件测试领域的许多学术研究都依赖于突变测试作为比较标准。然而,最近的研究表明,冗余突变体对其结果的准确性有显著影响。这个问题的一个解决方案是使用突变包容来检测冗余突变。因此,为了促进这一领域的研究,需要一种能够检测冗余突变的突变检测工具。在本文中,我们描述了如何改进我们的工具LittleDarwin来满足这一需求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信