Using machine learning to synthesize search programs

S. Minton, S. Wolfe
{"title":"Using machine learning to synthesize search programs","authors":"S. Minton, S. Wolfe","doi":"10.1109/KBSE.1994.342680","DOIUrl":null,"url":null,"abstract":"This paper describes how machine learning techniques are used in the MULTI-TAC system to specialize generic algorithm schemas for particular problem classes. MULTI-TAC is a program synthesis system that generates Lisp code to solve combinatorial integer constraint satisfaction problems. The use of algorithm schemas enables machine learning techniques to be applied in a very focused manner. These learning techniques enable the system to be sensitive to the distribution of instances that the system is expected to encounter. We describe two applications of machine learning in MULTI-TAC. The system learns domain specific heuristics, and then learns the most effective combination of heuristics on the training instances. We also describe empirical results that reinforce the viability of our approach.<<ETX>>","PeriodicalId":412417,"journal":{"name":"Proceedings KBSE '94. Ninth Knowledge-Based Software Engineering Conference","volume":"81 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings KBSE '94. Ninth Knowledge-Based Software Engineering Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/KBSE.1994.342680","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

This paper describes how machine learning techniques are used in the MULTI-TAC system to specialize generic algorithm schemas for particular problem classes. MULTI-TAC is a program synthesis system that generates Lisp code to solve combinatorial integer constraint satisfaction problems. The use of algorithm schemas enables machine learning techniques to be applied in a very focused manner. These learning techniques enable the system to be sensitive to the distribution of instances that the system is expected to encounter. We describe two applications of machine learning in MULTI-TAC. The system learns domain specific heuristics, and then learns the most effective combination of heuristics on the training instances. We also describe empirical results that reinforce the viability of our approach.<>
使用机器学习来合成搜索程序
本文描述了如何在MULTI-TAC系统中使用机器学习技术来专门化特定问题类的通用算法模式。MULTI-TAC是一个程序综合系统,它生成Lisp代码来解决组合整数约束满足问题。算法模式的使用使机器学习技术能够以一种非常集中的方式应用。这些学习技术使系统能够对系统预期遇到的实例分布敏感。我们描述了机器学习在MULTI-TAC中的两种应用。系统学习特定领域的启发式,然后在训练实例上学习最有效的启发式组合。我们还描述了强化我们方法可行性的实证结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信