Facial expression analysis for emotion recognition using kernel methods and statistical models

Hernán García, C. A. Torres, Jorge Ivan Marin Hurtado
{"title":"Facial expression analysis for emotion recognition using kernel methods and statistical models","authors":"Hernán García, C. A. Torres, Jorge Ivan Marin Hurtado","doi":"10.1109/STSIVA.2014.7010188","DOIUrl":null,"url":null,"abstract":"In this paper we present our framework for facial expression analysis using static models and kernel methods for classification. We describe the characterization methodology from parametric model. Also quantitatively evaluated the accuracy for feature detection and estimation of the parameters associated with facial expressions, analyzing its robustness to variations in pose. Then, a methodology of emotion characterization is introduced to perform the recognition. Furthermore, a cascade classifiers using kernel methods it is performed for emotion recognition. The experimental results show that the proposed model can effectively detect the different facial expressions. The model used and characterization methodology showed efficient to detect the emotion type in 93.4% of the cases.","PeriodicalId":114554,"journal":{"name":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 XIX Symposium on Image, Signal Processing and Artificial Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/STSIVA.2014.7010188","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we present our framework for facial expression analysis using static models and kernel methods for classification. We describe the characterization methodology from parametric model. Also quantitatively evaluated the accuracy for feature detection and estimation of the parameters associated with facial expressions, analyzing its robustness to variations in pose. Then, a methodology of emotion characterization is introduced to perform the recognition. Furthermore, a cascade classifiers using kernel methods it is performed for emotion recognition. The experimental results show that the proposed model can effectively detect the different facial expressions. The model used and characterization methodology showed efficient to detect the emotion type in 93.4% of the cases.
基于核方法和统计模型的面部表情分析及其情感识别
在本文中,我们提出了一个使用静态模型和核方法进行分类的面部表情分析框架。我们从参数模型描述了表征方法。还定量评估了特征检测和面部表情相关参数估计的准确性,分析了其对姿态变化的鲁棒性。然后,引入了一种情感表征方法来进行识别。在此基础上,提出了一种基于核方法的级联分类器用于情感识别。实验结果表明,该模型能够有效地检测不同的面部表情。所使用的模型和表征方法有效地检测了93.4%的病例的情绪类型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信