{"title":"Pulsed-latch ASIC synthesis in industrial design flow","authors":"Sangmin Kim, Duckhwan Kim, Youngsoo Shin","doi":"10.1109/ASPDAC.2013.6509621","DOIUrl":null,"url":null,"abstract":"Flip-flop has long been used as a sequencing element of choice in ASIC design; commercial synthesis tools have also been developed in this context. This work has been motivated by a question of whether existing CAD tools can be employed from RTL to layout while pulsed latch replaces flip-flop as a sequencing element. Two important problems have been identified and their solutions are proposed: placement of pulse generators and latches for integrity of pulse shape, and design of special scan latches and their selective use to reduce hold violations. A reference design flow has also been set up using published documents, in order to assess the proposed one. In 40-nm technology, the proposed flow achieves 20% reduction in circuit area and 30% reduction in power consumption, on average of 12 test circuits.","PeriodicalId":297528,"journal":{"name":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 18th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASPDAC.2013.6509621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Flip-flop has long been used as a sequencing element of choice in ASIC design; commercial synthesis tools have also been developed in this context. This work has been motivated by a question of whether existing CAD tools can be employed from RTL to layout while pulsed latch replaces flip-flop as a sequencing element. Two important problems have been identified and their solutions are proposed: placement of pulse generators and latches for integrity of pulse shape, and design of special scan latches and their selective use to reduce hold violations. A reference design flow has also been set up using published documents, in order to assess the proposed one. In 40-nm technology, the proposed flow achieves 20% reduction in circuit area and 30% reduction in power consumption, on average of 12 test circuits.