Single depth image super-resolution with multiple residual dictionary learning and refinement

Lijun Zhao, H. Bai, Jie Liang, Anhong Wang, Yao Zhao
{"title":"Single depth image super-resolution with multiple residual dictionary learning and refinement","authors":"Lijun Zhao, H. Bai, Jie Liang, Anhong Wang, Yao Zhao","doi":"10.1109/ICME.2017.8019331","DOIUrl":null,"url":null,"abstract":"Learning-based image super-resolution methods often use large datasets to learn texture features. When these methods are applied to depth images, emphasis should be given on learning the geometrical structures at object boundaries, since depth images do not have much texture information. In this paper, we develop a scheme to learn multiple residual dictionaries from only one external image. After depth image super-resolution, some artifacts may appear. An adaptive depth map refinement method is then proposed to remove these artifacts along the depth edges, based on the shape-adaptive weighted median filtering method. Experimental results demonstrate the advantage of the proposed method over many other methods.","PeriodicalId":330977,"journal":{"name":"2017 IEEE International Conference on Multimedia and Expo (ICME)","volume":"26 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE International Conference on Multimedia and Expo (ICME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICME.2017.8019331","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Learning-based image super-resolution methods often use large datasets to learn texture features. When these methods are applied to depth images, emphasis should be given on learning the geometrical structures at object boundaries, since depth images do not have much texture information. In this paper, we develop a scheme to learn multiple residual dictionaries from only one external image. After depth image super-resolution, some artifacts may appear. An adaptive depth map refinement method is then proposed to remove these artifacts along the depth edges, based on the shape-adaptive weighted median filtering method. Experimental results demonstrate the advantage of the proposed method over many other methods.
单深度图像超分辨率与多个残差字典学习和细化
基于学习的图像超分辨率方法通常使用大型数据集来学习纹理特征。当这些方法应用于深度图像时,重点应该放在学习物体边界的几何结构上,因为深度图像没有太多的纹理信息。在本文中,我们开发了一种仅从一张外部图像中学习多个残差字典的方案。深度图像超分辨率后,可能会出现一些伪影。在形状自适应加权中值滤波的基础上,提出了一种自适应深度图细化方法来去除深度边缘上的伪影。实验结果表明,该方法优于许多其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信