Multitask Diffusion Least-Mean-Fourth Algorithm

Qingyun Zhu
{"title":"Multitask Diffusion Least-Mean-Fourth Algorithm","authors":"Qingyun Zhu","doi":"10.1109/ICEICT55736.2022.9909472","DOIUrl":null,"url":null,"abstract":"In some applications, the multitask network may be corrupted by non-Gaussian noise, e.g., uniform noise or binary noise. If the multitask diffusion LMS algorithm is used in such situations, its steady-state performance will be degraded. To overcome this issue, this work presents a multitask diffusion version of the least-mean-fourth algorithm by using the fourth-order moment of the estimation error. To further enhance its convergence rate, the $l_{0}$-norm regularization is used. Simulation results show that our algorithms can obtain small steady-state mean-square deviation (MSD).","PeriodicalId":179327,"journal":{"name":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 5th International Conference on Electronic Information and Communication Technology (ICEICT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEICT55736.2022.9909472","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In some applications, the multitask network may be corrupted by non-Gaussian noise, e.g., uniform noise or binary noise. If the multitask diffusion LMS algorithm is used in such situations, its steady-state performance will be degraded. To overcome this issue, this work presents a multitask diffusion version of the least-mean-fourth algorithm by using the fourth-order moment of the estimation error. To further enhance its convergence rate, the $l_{0}$-norm regularization is used. Simulation results show that our algorithms can obtain small steady-state mean-square deviation (MSD).
多任务扩散最小平均四次算法
在某些应用中,多任务网络可能被非高斯噪声破坏,例如均匀噪声或二元噪声。如果在这种情况下使用多任务扩散LMS算法,则会降低其稳态性能。为了克服这个问题,本工作通过使用估计误差的四阶矩提出了最小平均四次算法的多任务扩散版本。为了进一步提高其收敛速度,使用了$l_{0}$-范数正则化。仿真结果表明,该算法可以获得较小的稳态均方偏差(MSD)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信