Google Earth Engine: Application Of Algorithms For Remote Sensing Of Crops In Tuscany (Italy)

J. Clemente, G. Fontanelli, G. Ovando, Y. Roa, A. Lapini, E. Santi
{"title":"Google Earth Engine: Application Of Algorithms For Remote Sensing Of Crops In Tuscany (Italy)","authors":"J. Clemente, G. Fontanelli, G. Ovando, Y. Roa, A. Lapini, E. Santi","doi":"10.1109/LAGIRS48042.2020.9165561","DOIUrl":null,"url":null,"abstract":"Remote sensing has become an important mean to assess crop areas, specially for the identification of crop types. Google Earth Engine (GEE) is a free platform that provides a large number of satellite images from different constellations. Moreover, GEE provides pixel-based classifiers, which are used for mapping agricultural areas. The objective of this work is to evaluate the performance of different classification algorithms such as Minimum Distance (MD), Random Forest (RF), Support Vector Machine (SVM), Classification and Regression Trees (CART) and Naïve Bayes (NB) on an agricultural area in Tuscany (Italy). Four different scenarios were implemented in GEE combining different information such as optical and Synthetic Aperture Radar (SAR) data, indices and time series. Among the five classifiers used the best performers were RF and SVM. Integrating Sentinel-1 (S1) and Sentinel-2 (S2) slightly improves the classification in comparison to the only S2 image classifications. The use of time series substantially improves supervised classifications. The analysis carried out so far lays the foundation for the integration of time series of SAR and optical data.","PeriodicalId":111863,"journal":{"name":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE Latin American GRSS & ISPRS Remote Sensing Conference (LAGIRS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LAGIRS48042.2020.9165561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

Abstract

Remote sensing has become an important mean to assess crop areas, specially for the identification of crop types. Google Earth Engine (GEE) is a free platform that provides a large number of satellite images from different constellations. Moreover, GEE provides pixel-based classifiers, which are used for mapping agricultural areas. The objective of this work is to evaluate the performance of different classification algorithms such as Minimum Distance (MD), Random Forest (RF), Support Vector Machine (SVM), Classification and Regression Trees (CART) and Naïve Bayes (NB) on an agricultural area in Tuscany (Italy). Four different scenarios were implemented in GEE combining different information such as optical and Synthetic Aperture Radar (SAR) data, indices and time series. Among the five classifiers used the best performers were RF and SVM. Integrating Sentinel-1 (S1) and Sentinel-2 (S2) slightly improves the classification in comparison to the only S2 image classifications. The use of time series substantially improves supervised classifications. The analysis carried out so far lays the foundation for the integration of time series of SAR and optical data.
谷歌地球引擎:算法在意大利托斯卡纳农作物遥感中的应用
遥感已成为作物面积评估,特别是作物类型识别的重要手段。谷歌地球引擎(GEE)是一个免费平台,提供来自不同星座的大量卫星图像。此外,GEE还提供基于像素的分类器,用于绘制农业区域。这项工作的目的是评估不同的分类算法,如最小距离(MD),随机森林(RF),支持向量机(SVM),分类和回归树(CART)和Naïve贝叶斯(NB)在托斯卡纳(意大利)农业区的性能。结合光学和合成孔径雷达(SAR)数据、指数和时间序列等不同信息,在GEE中实现了四种不同的场景。在使用的五个分类器中,表现最好的是RF和SVM。结合Sentinel-1 (S1)和Sentinel-2 (S2)图像进行分类,与仅使用S2图像分类相比,分类效果略有提高。时间序列的使用大大改善了监督分类。本文的分析为SAR时间序列与光学数据的融合奠定了基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信