DCT Based Facial Feature Extraction

H.C. Akakin, B. Sankur
{"title":"DCT Based Facial Feature Extraction","authors":"H.C. Akakin, B. Sankur","doi":"10.1109/SIU.2006.1659699","DOIUrl":null,"url":null,"abstract":"In this paper we introduced an automatic landmarking method for near-frontal face images based on DCT coefficients. The face information is provided as 480times640 gray-level images with 3D scene depth data. Range data is used to eliminate the background data from the face. The proposed facial landmarking algorithm uses a coarse-to-fine searching algorithm. In coarse level the images are downsampled to 80times60 pixels resolution. Both in coarse and fine levels SVM classifiers are trained using the DCT coefficients extracted from the manually landmarked training data. Coarse level candidate facial points are searched within the whole face image. Once the candidate locations are established, we revert back to the higher resolution image and refine the accuracy by using search windows around the coarse landmark locations","PeriodicalId":415037,"journal":{"name":"2006 IEEE 14th Signal Processing and Communications Applications","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 IEEE 14th Signal Processing and Communications Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2006.1659699","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In this paper we introduced an automatic landmarking method for near-frontal face images based on DCT coefficients. The face information is provided as 480times640 gray-level images with 3D scene depth data. Range data is used to eliminate the background data from the face. The proposed facial landmarking algorithm uses a coarse-to-fine searching algorithm. In coarse level the images are downsampled to 80times60 pixels resolution. Both in coarse and fine levels SVM classifiers are trained using the DCT coefficients extracted from the manually landmarked training data. Coarse level candidate facial points are searched within the whole face image. Once the candidate locations are established, we revert back to the higher resolution image and refine the accuracy by using search windows around the coarse landmark locations
基于DCT的人脸特征提取
本文提出了一种基于DCT系数的近正面人脸图像自动标记方法。人脸信息以480 × 640灰度图像的形式提供,具有3D场景深度数据。距离数据用于消除人脸的背景数据。提出的人脸标记算法采用一种从粗到精的搜索算法。在粗糙的水平下,图像被下采样到80乘以60像素的分辨率。支持向量机分类器在粗、细两个层次上都使用从人工标记训练数据中提取的DCT系数进行训练。在整个人脸图像中搜索粗级候选人脸点。一旦确定候选位置,我们将恢复到更高分辨率的图像,并通过使用粗糙地标位置周围的搜索窗口来提高精度
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信