{"title":"Joint Pricing and Matching for City-Scale Ride-Pooling","authors":"Sanket Shah, Meghna Lowalekar, Pradeep Varakantham","doi":"10.1609/icaps.v32i1.19836","DOIUrl":null,"url":null,"abstract":"Central to efficient ride-pooling are two challenges: (1) how to `price' customers' requests for rides, and (2) if the customer agrees to that price, how to best `match' these requests to drivers. While both of them are interdependent, each challenge's individual complexity has meant that, historically, they have been decoupled and studied individually.\n\nThis paper creates a framework for batched pricing and matching in which pricing is seen as a meta-level optimisation over different possible matching decisions. Our key contributions are in developing a variant of the revenue-maximizing auction corresponding to the meta-level optimization problem, and then providing a scalable mechanism for computing posted prices. We test our algorithm on real-world data at city-scale and show that our algorithm reliably matches demand to supply across a range of parameters.","PeriodicalId":239898,"journal":{"name":"International Conference on Automated Planning and Scheduling","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Conference on Automated Planning and Scheduling","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1609/icaps.v32i1.19836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Central to efficient ride-pooling are two challenges: (1) how to `price' customers' requests for rides, and (2) if the customer agrees to that price, how to best `match' these requests to drivers. While both of them are interdependent, each challenge's individual complexity has meant that, historically, they have been decoupled and studied individually.
This paper creates a framework for batched pricing and matching in which pricing is seen as a meta-level optimisation over different possible matching decisions. Our key contributions are in developing a variant of the revenue-maximizing auction corresponding to the meta-level optimization problem, and then providing a scalable mechanism for computing posted prices. We test our algorithm on real-world data at city-scale and show that our algorithm reliably matches demand to supply across a range of parameters.