From Type Spaces to Probability Frames and Back, via Language

Adam Bjorndahl, Joseph Y. Halpern
{"title":"From Type Spaces to Probability Frames and Back, via Language","authors":"Adam Bjorndahl, Joseph Y. Halpern","doi":"10.4204/EPTCS.251.6","DOIUrl":null,"url":null,"abstract":"We investigate the connection between the two major mathematical frameworks for modeling interactive beliefs: Harsanyi type spaces and possible-worlds style probability frames. While translating the former into the latter is straightforward, we demonstrate that the reverse translation relies implicitly on a background logical language. Once this \"language parameter\" is made explicit, it reveals a close relationship between universal type spaces and canonical models: namely, that they are essentially the same construct. As the nature of a canonical model depends heavily on the background logic used to generate it, this work suggests a new view into a corresponding landscape of universal type spaces.","PeriodicalId":118894,"journal":{"name":"Theoretical Aspects of Rationality and Knowledge","volume":"31 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theoretical Aspects of Rationality and Knowledge","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4204/EPTCS.251.6","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

We investigate the connection between the two major mathematical frameworks for modeling interactive beliefs: Harsanyi type spaces and possible-worlds style probability frames. While translating the former into the latter is straightforward, we demonstrate that the reverse translation relies implicitly on a background logical language. Once this "language parameter" is made explicit, it reveals a close relationship between universal type spaces and canonical models: namely, that they are essentially the same construct. As the nature of a canonical model depends heavily on the background logic used to generate it, this work suggests a new view into a corresponding landscape of universal type spaces.
通过语言,从类型空间到概率框架再回来
我们研究了交互信念建模的两个主要数学框架:Harsanyi类型空间和可能世界风格概率框架之间的联系。虽然将前者翻译成后者很简单,但我们证明了反向翻译隐含地依赖于背景逻辑语言。一旦明确了这个“语言参数”,它就揭示了通用类型空间和规范模型之间的密切关系:也就是说,它们本质上是相同的结构。由于规范模型的性质在很大程度上取决于用于生成它的背景逻辑,这项工作为通用类型空间的相应景观提供了一种新的视角。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信