Neural network based approach for the computation of harmonic power in a real-time microprocessor-based vector control for an induction motor drive

J. M. Moreno-Eguilaz, J. Peracaula, A. Esquivel
{"title":"Neural network based approach for the computation of harmonic power in a real-time microprocessor-based vector control for an induction motor drive","authors":"J. M. Moreno-Eguilaz, J. Peracaula, A. Esquivel","doi":"10.1109/ISIE.2000.930526","DOIUrl":null,"url":null,"abstract":"With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variation have become important. A neural networks based approach has been demonstrated to be a very interesting tool for this purpose. However, initial conditions are critical for real-time implementation. A selective harmonic tracking algorithm is proposed to calculate initial conditions for the neural network. In this paper, a fully digital algorithm to measure and evaluate harmonic power using a neural network together with a selective harmonic tracking method is applied to an efficient variable-speed vector-controlled 1.5 kW induction motor drive.","PeriodicalId":298625,"journal":{"name":"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISIE'2000. Proceedings of the 2000 IEEE International Symposium on Industrial Electronics (Cat. No.00TH8543)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIE.2000.930526","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

With increasing harmonic pollution in the power system, real-time monitoring and analysis of harmonic variation have become important. A neural networks based approach has been demonstrated to be a very interesting tool for this purpose. However, initial conditions are critical for real-time implementation. A selective harmonic tracking algorithm is proposed to calculate initial conditions for the neural network. In this paper, a fully digital algorithm to measure and evaluate harmonic power using a neural network together with a selective harmonic tracking method is applied to an efficient variable-speed vector-controlled 1.5 kW induction motor drive.
基于神经网络的异步电动机矢量实时控制谐波功率计算方法
随着电力系统中谐波污染的日益严重,谐波变化的实时监测和分析变得越来越重要。基于神经网络的方法已被证明是一个非常有趣的工具。然而,初始条件对于实时实现至关重要。提出了一种计算神经网络初始条件的选择性谐波跟踪算法。本文提出了一种基于神经网络和选择性谐波跟踪的全数字谐波功率测量和评估算法,并将其应用于高效变频矢量控制的1.5 kW异步电动机驱动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信