Workpiece surface roughness prediction in grinding process for different disc dressing conditions

H. Baseri
{"title":"Workpiece surface roughness prediction in grinding process for different disc dressing conditions","authors":"H. Baseri","doi":"10.1109/ICMET.2010.5598352","DOIUrl":null,"url":null,"abstract":"The surface roughness of workpiece in grinding process is influenced and determined by the disc dressing conditions due to effects of dressing process on the wheel surface topography. In this way, prediction of the surface roughness helps to optimize the disc dressing conditions to improve surface roughness. The objective of this study is to design of a feed forward back propagation neural network (FFBP-NN) for estimation of surface roughness in grinding process using the data generated based on experimental observations when the wheel is dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experiment procedure the grinding conditions are constant and only the dressing conditions are varied. The comparison of the predicted values and the experimental data indicates that the predictive model has an acceptable performance to estimation of surface roughness.","PeriodicalId":415118,"journal":{"name":"2010 International Conference on Mechanical and Electrical Technology","volume":"29 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Mechanical and Electrical Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMET.2010.5598352","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

The surface roughness of workpiece in grinding process is influenced and determined by the disc dressing conditions due to effects of dressing process on the wheel surface topography. In this way, prediction of the surface roughness helps to optimize the disc dressing conditions to improve surface roughness. The objective of this study is to design of a feed forward back propagation neural network (FFBP-NN) for estimation of surface roughness in grinding process using the data generated based on experimental observations when the wheel is dressed using a rotary diamond disc dresser. The input parameters of model are dressing speed ratio, dressing depth and dresser cross-feed rate and output parameter is surface roughness. In the experiment procedure the grinding conditions are constant and only the dressing conditions are varied. The comparison of the predicted values and the experimental data indicates that the predictive model has an acceptable performance to estimation of surface roughness.
不同砂轮修整条件下磨削过程工件表面粗糙度预测
砂轮修整工艺对砂轮表面形貌的影响决定了砂轮修整条件对磨削过程中工件表面粗糙度的影响。这样,对表面粗糙度的预测有助于优化圆盘修整条件,以提高表面粗糙度。本研究的目的是设计一个前馈-反传播神经网络(FFBP-NN),利用旋转金刚石盘修整器修整砂轮时的实验观测数据来估计磨削过程中的表面粗糙度。模型的输入参数为修整速比、修整深度和修整器交叉进给率,输出参数为表面粗糙度。在实验过程中,磨矿条件不变,只有选矿条件变化。预测值与实验数据的比较表明,该预测模型对表面粗糙度的估计具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信