Analysis of Record Data from the Scaled Logistic Distribution

A. Asgharzadeh, M. Abdi, R. Valiollahi
{"title":"Analysis of Record Data from the Scaled Logistic Distribution","authors":"A. Asgharzadeh, M. Abdi, R. Valiollahi","doi":"10.18869/ACADPUB.JSRI.10.1.41","DOIUrl":null,"url":null,"abstract":"In this paper, we consider the estimation of the unknown pa- rameter of the scaled logistic distribution on the basis of record values. The maximum likelihood method does not provide an explicit estimator for the scale parameter. In this article, we present a simple method of deriving an explicit estimator by approximating the likelihood function. Bayes estima- tor is obtained using importance sampling. Asymptotic confidence intervals, bootstrap confidence interval and credible interval are also proposed. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of one real data set is also given for illustrative purposes.","PeriodicalId":422124,"journal":{"name":"Journal of Statistical Research of Iran","volume":"4 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Statistical Research of Iran","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18869/ACADPUB.JSRI.10.1.41","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

In this paper, we consider the estimation of the unknown pa- rameter of the scaled logistic distribution on the basis of record values. The maximum likelihood method does not provide an explicit estimator for the scale parameter. In this article, we present a simple method of deriving an explicit estimator by approximating the likelihood function. Bayes estima- tor is obtained using importance sampling. Asymptotic confidence intervals, bootstrap confidence interval and credible interval are also proposed. Monte Carlo simulations are performed to compare the different proposed methods. Analysis of one real data set is also given for illustrative purposes.
规模化物流配送的记录数据分析
本文考虑了基于记录值的标度logistic分布的未知参数估计问题。最大似然法不提供尺度参数的显式估计。在本文中,我们提出了一种通过近似似然函数推导显式估计量的简单方法。采用重要抽样法得到贝叶斯估计。给出了渐近置信区间、自举置信区间和可信区间。通过蒙特卡罗仿真对不同的方法进行了比较。为了说明问题,还给出了一个真实数据集的分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信