Feature-Based Mapping Using Incremental Gaussian Mixture Models

M. R. Heinen, P. Engel
{"title":"Feature-Based Mapping Using Incremental Gaussian Mixture Models","authors":"M. R. Heinen, P. Engel","doi":"10.1109/LARS.2010.13","DOIUrl":null,"url":null,"abstract":"This paper proposes a new algorithm for feature-based environment mapping where the environment is represented using multivariate Gaussian mixture models. This algorithm, which can be used either with sonar or laser range data, is able to create and maintain environment maps in real time using few memory requirements. Moreover, it does not assume that the environment is composed by linear structures and allows computing the occupancy probabilities of any map position very fast and without introducing discretization errors. The experiments performed with the proposed model prototype show that it is able to build accurate environment representations using real data provided by a mobile robot.","PeriodicalId":268931,"journal":{"name":"2010 Latin American Robotics Symposium and Intelligent Robotics Meeting","volume":"34 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 Latin American Robotics Symposium and Intelligent Robotics Meeting","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LARS.2010.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

Abstract

This paper proposes a new algorithm for feature-based environment mapping where the environment is represented using multivariate Gaussian mixture models. This algorithm, which can be used either with sonar or laser range data, is able to create and maintain environment maps in real time using few memory requirements. Moreover, it does not assume that the environment is composed by linear structures and allows computing the occupancy probabilities of any map position very fast and without introducing discretization errors. The experiments performed with the proposed model prototype show that it is able to build accurate environment representations using real data provided by a mobile robot.
基于特征的增量高斯混合模型映射
本文提出了一种新的基于特征的环境映射算法,该算法使用多元高斯混合模型来表示环境。该算法可以与声纳或激光距离数据一起使用,能够在很少的内存需求下实时创建和维护环境地图。此外,它不假设环境是由线性结构组成的,并且可以非常快速地计算任何地图位置的占用概率,而不会引入离散化误差。用该模型原型进行的实验表明,该模型能够利用移动机器人提供的真实数据构建准确的环境表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信