The impact of corpus quality and type on topic based text segmentation evaluation

A. Labadié, V. Prince
{"title":"The impact of corpus quality and type on topic based text segmentation evaluation","authors":"A. Labadié, V. Prince","doi":"10.1109/IMCSIT.2008.4747258","DOIUrl":null,"url":null,"abstract":"In this paper, we try to fathom the real impact of corpus quality on methods performances and their evaluations. The considered task is topic-based text segmentation, and two highly different unsupervised algorithms are compared: C 99, a word-based system, augmented with LSA, and Transeg, a sentence-based system. Two main characteristics of corpora have been investigated: Data quality (clean vs raw corpora), corpora manipulation (natural vs artificial data sets). The corpus size has also been subject to variation, and experiments related in this paper have shown that corpora characteristics highly impact recall and precision values for both algorithms.","PeriodicalId":267715,"journal":{"name":"2008 International Multiconference on Computer Science and Information Technology","volume":"50 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 International Multiconference on Computer Science and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IMCSIT.2008.4747258","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

In this paper, we try to fathom the real impact of corpus quality on methods performances and their evaluations. The considered task is topic-based text segmentation, and two highly different unsupervised algorithms are compared: C 99, a word-based system, augmented with LSA, and Transeg, a sentence-based system. Two main characteristics of corpora have been investigated: Data quality (clean vs raw corpora), corpora manipulation (natural vs artificial data sets). The corpus size has also been subject to variation, and experiments related in this paper have shown that corpora characteristics highly impact recall and precision values for both algorithms.
语料库质量和类型对基于主题的文本分割评价的影响
在本文中,我们试图了解语料库质量对方法性能及其评估的实际影响。所考虑的任务是基于主题的文本分割,并比较了两种高度不同的无监督算法:c99(基于单词的系统,增强了LSA)和Transeg(基于句子的系统)。研究了语料库的两个主要特征:数据质量(干净语料库与原始语料库),语料库操作(自然数据集与人工数据集)。语料库的大小也会发生变化,本文相关的实验表明,语料库特征对两种算法的召回率和精度值都有很大的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信