Fast inverters and dividers for finite field GF(2/sup m/)

Y. Horng, Shyue-Win Wei
{"title":"Fast inverters and dividers for finite field GF(2/sup m/)","authors":"Y. Horng, Shyue-Win Wei","doi":"10.1109/APCCAS.1994.514550","DOIUrl":null,"url":null,"abstract":"Based on Euclid's algorithm, two architectures for performing rapid inversions and divisions in finite field GF(2/sup m/) with the standard basis representation are presented. Both architectures have regularity and modularity and are well suited for VLSI implementation. These circuits can be easily expanded to any finite field size because they are independent of the primitive polynomial used to generate the field. The proposed inverter and divider take exactly 2(m-1) clock cycles for each inversion and division operation, and the clock period is independent of the field size m.","PeriodicalId":231368,"journal":{"name":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","volume":"27 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of APCCAS'94 - 1994 Asia Pacific Conference on Circuits and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/APCCAS.1994.514550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

Based on Euclid's algorithm, two architectures for performing rapid inversions and divisions in finite field GF(2/sup m/) with the standard basis representation are presented. Both architectures have regularity and modularity and are well suited for VLSI implementation. These circuits can be easily expanded to any finite field size because they are independent of the primitive polynomial used to generate the field. The proposed inverter and divider take exactly 2(m-1) clock cycles for each inversion and division operation, and the clock period is independent of the field size m.
有限域GF(2/sup m/)快速逆变器和分频器
基于欧几里得算法,提出了在有限域GF(2/sup m/)上用标准基表示进行快速反演和除法的两种体系结构。这两种架构都具有规律性和模块化,非常适合VLSI实现。这些电路可以很容易地扩展到任何有限的域大小,因为它们独立于用于产生域的原始多项式。所提出的逆变器和分频器每次反转和除法操作正好需要2(m-1)个时钟周期,并且时钟周期与场大小m无关。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信