Mining Maximal Frequent Dense Subgraphs without Candidate Maintenance in PPI Networks

Miao Wang, Xuequn Shang, Xiao-gang Lei, Zhanhuai Li
{"title":"Mining Maximal Frequent Dense Subgraphs without Candidate Maintenance in PPI Networks","authors":"Miao Wang, Xuequn Shang, Xiao-gang Lei, Zhanhuai Li","doi":"10.1109/IWISA.2010.5473237","DOIUrl":null,"url":null,"abstract":"The prediction of protein function is one of the most challenging problems in bioinformatics. Several studies have shown that the prediction using PPI is promising. However, the PPI data generated from high-throughput experiments are very noisy, which renders great challenges to the existing methods. In this paper, we propose an algorithm, MFC, to efficiently mine maximal frequent dense subgraphs without candidate maintenance in PPI networks. It adopts several techniques to achieve efficient mining. We evaluate our approach on four human PPI data sets. The experimental results show our approach has good performance in terms of efficiency.","PeriodicalId":298764,"journal":{"name":"2010 2nd International Workshop on Intelligent Systems and Applications","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 2nd International Workshop on Intelligent Systems and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWISA.2010.5473237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The prediction of protein function is one of the most challenging problems in bioinformatics. Several studies have shown that the prediction using PPI is promising. However, the PPI data generated from high-throughput experiments are very noisy, which renders great challenges to the existing methods. In this paper, we propose an algorithm, MFC, to efficiently mine maximal frequent dense subgraphs without candidate maintenance in PPI networks. It adopts several techniques to achieve efficient mining. We evaluate our approach on four human PPI data sets. The experimental results show our approach has good performance in terms of efficiency.
PPI网络中无候选维护的最大频繁密集子图挖掘
蛋白质功能的预测是生物信息学中最具挑战性的问题之一。几项研究表明,使用PPI进行预测是有希望的。然而,高通量实验产生的PPI数据具有很大的噪声,这对现有的方法提出了很大的挑战。在本文中,我们提出了一种MFC算法来有效地挖掘PPI网络中不需要候选维护的最大频繁密集子图。它采用了几种技术来实现高效采矿。我们在四个人类PPI数据集上评估了我们的方法。实验结果表明,该方法在效率方面具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信