{"title":"Biomedical Signal Processing","authors":"A. Cohen","doi":"10.1201/9780429290800","DOIUrl":null,"url":null,"abstract":"The automatic segmentation of lung lesions from COVID-19 computed tomography (CT) images is helpful in establishing a quantitative model to diagnose and treat COVID-19. To this end, this study proposes a lightweight segmentation network called the SuperMini-Seg. We propose a new module called the transformer parallel convolution module (TPCB), which introduces both transformer and convolution operations in one module. SuperMini-seg adopts the structure of a double-branch parallel to downsample the image and designs a gated attention mechanism in the middle of the two parallel branches. At the same time, the attentive hierarchical spatial pyramid (AHSP) module and criss-cross attention module are adopted, and more than 100K parameters are present in the model. At the same time, the model is scalable, and the parameter quantity of SuperMini-seg-V2 reaches more than 70K. Compared with other advanced methods, the segmentation accuracy was almost reached the state-of-art method. The calculation efficiency was high, which is convenient for practical deployment.","PeriodicalId":200670,"journal":{"name":"Series in BioEngineering","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"165","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Series in BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1201/9780429290800","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 165
Abstract
The automatic segmentation of lung lesions from COVID-19 computed tomography (CT) images is helpful in establishing a quantitative model to diagnose and treat COVID-19. To this end, this study proposes a lightweight segmentation network called the SuperMini-Seg. We propose a new module called the transformer parallel convolution module (TPCB), which introduces both transformer and convolution operations in one module. SuperMini-seg adopts the structure of a double-branch parallel to downsample the image and designs a gated attention mechanism in the middle of the two parallel branches. At the same time, the attentive hierarchical spatial pyramid (AHSP) module and criss-cross attention module are adopted, and more than 100K parameters are present in the model. At the same time, the model is scalable, and the parameter quantity of SuperMini-seg-V2 reaches more than 70K. Compared with other advanced methods, the segmentation accuracy was almost reached the state-of-art method. The calculation efficiency was high, which is convenient for practical deployment.