{"title":"ParkINN: An Integrated Neural Network Model for Parkinson Detection","authors":"Sricheta Parui, Uttam Ghosh, Puspita Chatterjee","doi":"10.1109/PhDEDITS56681.2022.9955252","DOIUrl":null,"url":null,"abstract":"One common neurological condition Parkinson is one of the diseases which might make it difficult for a patient to live a regular life like other people. It is a progressive neurodegenerative condition that is difficult to detect in the early stages. Traditional EEG-based PD diagnosis relies on arduous, time-consuming feature extraction that is done by hand. The ParkINN (Parkinson Identification Neural Network) has been proposed as a new EEG-based network for Parkinson’s screening that can quickly identify patients suffering from Parkinson’s or early stages of Parkinson’s. The suggested approach uses windowing and long-short term memory (LSTM) architectures for sequence learning, as well as 3 Dimensional Convolutional Neural Networks (CNN) for temporal learning of the EEG signal. The accuracy rate of the proposed 3D CNN-LSTM model is 94.64 percent, which is higher than the findings of the majority of other work in this area.","PeriodicalId":373652,"journal":{"name":"2022 IEEE 4th PhD Colloquium on Emerging Domain Innovation and Technology for Society (PhD EDITS)","volume":"93 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 4th PhD Colloquium on Emerging Domain Innovation and Technology for Society (PhD EDITS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PhDEDITS56681.2022.9955252","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
One common neurological condition Parkinson is one of the diseases which might make it difficult for a patient to live a regular life like other people. It is a progressive neurodegenerative condition that is difficult to detect in the early stages. Traditional EEG-based PD diagnosis relies on arduous, time-consuming feature extraction that is done by hand. The ParkINN (Parkinson Identification Neural Network) has been proposed as a new EEG-based network for Parkinson’s screening that can quickly identify patients suffering from Parkinson’s or early stages of Parkinson’s. The suggested approach uses windowing and long-short term memory (LSTM) architectures for sequence learning, as well as 3 Dimensional Convolutional Neural Networks (CNN) for temporal learning of the EEG signal. The accuracy rate of the proposed 3D CNN-LSTM model is 94.64 percent, which is higher than the findings of the majority of other work in this area.