Evolving Random Topologies of Spiking Neural Networks for Pattern Recognition

G. López-Vázquez, M. Ornelas-Rodríguez, Andrés Espinal, J. Soria-Alcaraz, Alfonso Rojas-Domínguez, H. J. Puga-Soberanes, J. M. Carpio, H. Rostro-González
{"title":"Evolving Random Topologies of Spiking Neural Networks for Pattern Recognition","authors":"G. López-Vázquez, M. Ornelas-Rodríguez, Andrés Espinal, J. Soria-Alcaraz, Alfonso Rojas-Domínguez, H. J. Puga-Soberanes, J. M. Carpio, H. Rostro-González","doi":"10.5121/CSIT.2019.90704","DOIUrl":null,"url":null,"abstract":"Artificial Neural Networks (ANNs) have been successfully used in Pattern Recognition tasks. Evolutionary Spiking Neural Networks (ESNNs) constitute an approach to design thirdgeneration ANNs (also known as Spiking Neural Networks, SNNs) involving Evolutionary Algorithms (EAs) to govern some intrinsic aspects of the networks, such as topology, connections and/or parameters. Concerning the practicality of the networks, a rather simple standard is commonly used; restricted feed-forward fully-connected network topologies deprived from more complex connections are usually considered. Notwithstanding, a wider prospect of configurations in contrast to standard network topologies is available for research. In this paper, ESNNs are evolved to solve pattern classification tasks, using an EA-based algorithm known as Grammatical Evolution (GE). Experiments demonstrate competitive results and a distinctive variety of network designs when compared to a more traditional approach to design ESNNs.","PeriodicalId":383682,"journal":{"name":"8th International Conference on Soft Computing, Artificial Intelligence and Applications","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"8th International Conference on Soft Computing, Artificial Intelligence and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5121/CSIT.2019.90704","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Artificial Neural Networks (ANNs) have been successfully used in Pattern Recognition tasks. Evolutionary Spiking Neural Networks (ESNNs) constitute an approach to design thirdgeneration ANNs (also known as Spiking Neural Networks, SNNs) involving Evolutionary Algorithms (EAs) to govern some intrinsic aspects of the networks, such as topology, connections and/or parameters. Concerning the practicality of the networks, a rather simple standard is commonly used; restricted feed-forward fully-connected network topologies deprived from more complex connections are usually considered. Notwithstanding, a wider prospect of configurations in contrast to standard network topologies is available for research. In this paper, ESNNs are evolved to solve pattern classification tasks, using an EA-based algorithm known as Grammatical Evolution (GE). Experiments demonstrate competitive results and a distinctive variety of network designs when compared to a more traditional approach to design ESNNs.
用于模式识别的脉冲神经网络随机拓扑进化
人工神经网络(ann)已经成功地应用于模式识别任务中。进化尖峰神经网络(esnn)是设计第三代人工神经网络(也称为尖峰神经网络,SNNs)的一种方法,它涉及进化算法(EAs)来管理网络的一些内在方面,如拓扑、连接和/或参数。关于网络的实用性,通常使用一个相当简单的标准;通常考虑的是限制前馈全连接网络拓扑,该拓扑不具有更复杂的连接。尽管如此,与标准网络拓扑结构相比,配置的更广阔前景可供研究。在本文中,esnn使用一种称为语法进化(GE)的基于ea的算法来解决模式分类任务。与设计esnn的传统方法相比,实验证明了具有竞争力的结果和独特的网络设计。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信