Selected Features for Classification of 12-lead ECGs

M. Żyliński, G. Cybulski
{"title":"Selected Features for Classification of 12-lead ECGs","authors":"M. Żyliński, G. Cybulski","doi":"10.22489/CinC.2020.061","DOIUrl":null,"url":null,"abstract":"In this paper we describe our algorithm develop by the Alba_W.O. team at The PhysioNet/Computing in Cardiology Challenge 2020. Our approach achieved a challenge validation score of 0.308 and a full test score of 0.102, placing us 31 out of 40 in the official ranking. Our final algorithm is based on bootstrap-aggregated (bagged) decision trees. For the classification task, we provide a set of features extracted from 12-lead ECG, in detail describe later. We use the method implemented in PhysioNet-Cardiovascular-Signal-Toolbox: Global Electrical Heterogeneity, arterial fibrillation features, and PVC detection. We also estimate ECG periods (PR, QS, QR, PT, TP) and morphology parameters (ST elevation, QRS area, ECG value at R points). We also examine the importance of each predictor individually, for the classification task, using a t-test. All groups of used parameters, without sex shown utility in some class classification cases.","PeriodicalId":407282,"journal":{"name":"2020 Computing in Cardiology","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 Computing in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.22489/CinC.2020.061","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In this paper we describe our algorithm develop by the Alba_W.O. team at The PhysioNet/Computing in Cardiology Challenge 2020. Our approach achieved a challenge validation score of 0.308 and a full test score of 0.102, placing us 31 out of 40 in the official ranking. Our final algorithm is based on bootstrap-aggregated (bagged) decision trees. For the classification task, we provide a set of features extracted from 12-lead ECG, in detail describe later. We use the method implemented in PhysioNet-Cardiovascular-Signal-Toolbox: Global Electrical Heterogeneity, arterial fibrillation features, and PVC detection. We also estimate ECG periods (PR, QS, QR, PT, TP) and morphology parameters (ST elevation, QRS area, ECG value at R points). We also examine the importance of each predictor individually, for the classification task, using a t-test. All groups of used parameters, without sex shown utility in some class classification cases.
12导联心电图分类的选择特征
本文描述了利用Alba_W.O开发的算法。2020年物理网络/心脏病学计算挑战赛的团队。我们的方法获得了0.308的挑战验证分数和0.102的完整测试分数,在40个官方排名中排名第31位。我们最后的算法是基于自举聚合(袋装)决策树。对于分类任务,我们提供了一组从12导联心电图中提取的特征,稍后详细描述。我们使用在PhysioNet-Cardiovascular-Signal-Toolbox中实现的方法:全局电异质性、动脉颤动特征和PVC检测。我们还估计了ECG周期(PR、QS、QR、PT、TP)和形态学参数(ST段抬高、QRS面积、R点ECG值)。对于分类任务,我们还使用t检验单独检查每个预测因子的重要性。所有使用的参数组,不分性别,在某些类别分类情况下显示效用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信