Abstraction in Model Based Partially Observable Reinforcement Learning Using Extended Sequence Trees

Erkin Çilden, Faruk Polat
{"title":"Abstraction in Model Based Partially Observable Reinforcement Learning Using Extended Sequence Trees","authors":"Erkin Çilden, Faruk Polat","doi":"10.1109/WI-IAT.2012.161","DOIUrl":null,"url":null,"abstract":"Extended sequence tree is a direct method for automatic generation of useful abstractions in reinforcement learning, designed for problems that can be modelled as Markov decision process. This paper proposes a method to expand the extended sequence tree method over reinforcement learning to cover partial observability formalized via partially observable Markov decision process through belief state formalism. This expansion requires a reasonable approximation of information state. Inspired by statistical ranking, a simple but effective discretization schema over belief state space is defined. Extended sequence tree method is modified to make use of this schema under partial observability, and effectiveness of resulting algorithm is shown by experiments on some benchmark problems.","PeriodicalId":220218,"journal":{"name":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","volume":"58 5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE/WIC/ACM International Conferences on Web Intelligence and Intelligent Agent Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WI-IAT.2012.161","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

Extended sequence tree is a direct method for automatic generation of useful abstractions in reinforcement learning, designed for problems that can be modelled as Markov decision process. This paper proposes a method to expand the extended sequence tree method over reinforcement learning to cover partial observability formalized via partially observable Markov decision process through belief state formalism. This expansion requires a reasonable approximation of information state. Inspired by statistical ranking, a simple but effective discretization schema over belief state space is defined. Extended sequence tree method is modified to make use of this schema under partial observability, and effectiveness of resulting algorithm is shown by experiments on some benchmark problems.
基于扩展序列树的部分可观察模型强化学习抽象
扩展序列树是一种在强化学习中自动生成有用抽象的直接方法,专为可建模为马尔可夫决策过程的问题而设计。本文提出了一种方法,将强化学习上的扩展序列树方法扩展到包含部分可观察马尔可夫决策过程的部分可观察性。这种扩展需要对信息状态有一个合理的近似。受统计排序的启发,定义了一种简单有效的信念状态空间离散化模式。在部分可观察性条件下,对扩展序列树方法进行了改进,利用了该模式,并通过一些基准问题的实验证明了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信