Generalização da integral de Fresnel

J. Carvalho, P. Lino
{"title":"Generalização da integral de Fresnel","authors":"J. Carvalho, P. Lino","doi":"10.21711/2319023x2022/pmo102","DOIUrl":null,"url":null,"abstract":"In the literature, there are several classes and techniques for computing improper integrals, such as residue theory, change of order of integration, Laplace transforms, etc. In this article, we will present an analytical expression for the generalization of one of the Fresnel integrals, for this, we will use Laplace transforms, change of order of integration and identities involving beta and gamma functions. We believe that the development of alternative techniques to Analytically calculating improper integrals is of paramount importance for the understanding of theory and for the improvement of current techniques.","PeriodicalId":274953,"journal":{"name":"Revista Professor de Matemática On line","volume":"63 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Revista Professor de Matemática On line","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21711/2319023x2022/pmo102","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the literature, there are several classes and techniques for computing improper integrals, such as residue theory, change of order of integration, Laplace transforms, etc. In this article, we will present an analytical expression for the generalization of one of the Fresnel integrals, for this, we will use Laplace transforms, change of order of integration and identities involving beta and gamma functions. We believe that the development of alternative techniques to Analytically calculating improper integrals is of paramount importance for the understanding of theory and for the improvement of current techniques.
菲涅耳积分的推广
在文献中,有几种计算反常积分的类和技术,如剩余论、积分阶变换、拉普拉斯变换等。在这篇文章中,我们将给出一个菲涅耳积分推广的解析表达式,为此,我们将使用拉普拉斯变换、积分阶变换和包含函数和函数的恒等式。我们认为,发展解析计算反常积分的替代技术对理解理论和改进现有技术至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信